May 2023

B.Sc. (H) Mathematics-IV SEMESTER

 Analytical Geometry (BMH-401A)Time : 3 Hours]
[Max. Marks : 75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find the eccentricity of the ellipse $2 x^{2}+3 y^{2}=1$.
(b) Write the equation of the tangent to the curve $a x^{2}+$ $2 h x y+b y^{2}=0$ at the point $(1,2)$.
(c) Find the polar coordinates of the point whose cartesian coordinates are $(0,1)$.
(d) Find the nature of the conic $\frac{2}{r}=2+2 \cos \theta$.
(e) What is great circle?
(f) Define semi-vertical angle of a cone.

323401/80/111/107
(g) Write the equation of a hyperbolic paraboloid. (1.5)
(h) Write the equation of the director circle of the conic $2 x^{2}+3 y^{2}=1$ at the point $(1,-1)$.
(i) What is chord of contact of a conic?
(j) Write the general equation for $z x$ plane.

PART-B

2. (a) Trace the following conic and reduce it to canonical form

$$
\begin{equation*}
4 x^{2}-4 x y+y^{2}-8 x-6 y+5=0 \tag{7}
\end{equation*}
$$

(b) Trace the following conic, reduce it to canonical form and find its eccentricity, and length of major axis

$$
\begin{equation*}
x^{2}+12 x y-4 y^{2}-\dot{c} x+4 y+9=0 \tag{8}
\end{equation*}
$$

3. (a) Find the equation of the tangent and normal to the conic $x^{2}+2 x y+y^{2}-2 x-1=0$ at the point $(0,1)$.
(b) The normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}\right.$, $2 a t)$ meets the parabola again at the point $\left(a t_{1}{ }^{2}, 2 a t_{1}\right)$. Prove that $t^{2}+t_{1}+2=0$.
4. (a) Find the coordinates of the pole of the straight line $3 x+4 y+1=0$ with respect to the circle

$$
\begin{equation*}
x^{2}+y^{2}+6 x+4 y-3=0 \tag{7}
\end{equation*}
$$

(b) The plane $x+2 y+2 z=6$ meets the co-ordinate axes at A, B, C. Find the equation of the sphere $O A B C, O$ being the origin. Also find the radius of the sphere.
5. (a) Find the equation of the cone with vertex at the origin and passes through the curve $a x^{2}+b y^{2}+c z^{2}=1$, $\alpha x^{2}+\beta y^{2}=2 z$.
(b) Find the equation of the cylinder whose generators are parallel to the line $3 x=3 y=z$ and whose guiding curve is $x^{2}+y^{2}=1, z=1$.
6. (a) Find the equations of the tangent plane to the surface $x^{2}-2 y^{2}+3 z^{2}=2$ which are parallel to the plane $x-2 y+3 z=0$.
(b) Find the pole of the plane $l x+m y+n z=p$ with respect to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
7. (a) If the section of the enveloping cone of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. by the plane $z=0$ is a rectangular hyperbola, then prove that the locus of the vertex of the cone is $\frac{x^{2}+y^{2}}{a^{2}+b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) Show that the section of the ellipsoid

$$
\begin{equation*}
9 x^{2}+6 y^{2}+14 z^{2}=3 \tag{8}
\end{equation*}
$$

by the plane $x+y+z=0$ is an ellipse.

