(b) Solve the differential equation
(8)

$$
x^{3} \frac{d^{3} y}{d x^{3}}-4 x^{2} \frac{d^{2} y}{d x^{2}}+8 x \frac{d y}{d x}-8 y=4 \operatorname{In} x
$$

6. (a) A ball weighing 8 lb falls from rest towards the earth from a great height. As it falls, air resistance acts upon it and we shall assume that this resistance (in pounds) is numerically equal to $2 v$, where v is the velocity (in feet per second). Find the velocity and distance fallen at time t seconds.
(b) Solve the differential equation

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}+\frac{d^{2} y}{d x^{2}}=3 x^{2}+4 \sin x-2 \cos x \tag{8}
\end{equation*}
$$

7. (a) Write a short note on radioactive decay. Formulate the differential equation and solve it.
(b) If the half life of a radioactive element is τ, then find the rate constant K for the radioactive element in terms of τ.
(c) Find the orthogonal trajectories of the family of parabolas

$$
\begin{equation*}
y=c x^{2} \tag{5}
\end{equation*}
$$

Roll No.

May 2023

B.Sc. (MATHEMATICS/MAC)- 2nd SEMESTER Differential Equations (BMH-202A)

Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find all the solutions of the differential equation (1.5)

$$
\frac{d y}{d x}=6 x(y-1)^{\frac{2}{3}}
$$

(b) Find the order and degree of the differential equation
(1.5)

$$
4 \frac{d^{3} y}{d x^{3}}-\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+5 \frac{d y}{d x}+4=0
$$

(c) Examine whether the differential equation is linear or not

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}+3 x^{2} \frac{d y}{d x}-5 y=\sin x \tag{1.5}
\end{equation*}
$$

Also, find its order.
(d) Examine whether the differential equation is exact or not

$$
\begin{equation*}
y^{2} d x+2 x y d y=0 \tag{1.5}
\end{equation*}
$$

(e) Show that the solutions e^{x}, e^{-x} and $e^{2 x}$ of

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0 \tag{1.5}
\end{equation*}
$$

are linearly independent.
(f) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=0
$$

(g) Find the general solution of

$$
\frac{d^{3} y}{d x^{3}}-4 \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+18 y=0
$$

(h) Write a short note on growth and decay model. Formulate the differential equations.
(i) Write a short note on Lotka-Volterra population model.
(j) Write the general formula for finding the Picard method of successive approximations for finding a solution of the initial value problem

$$
\begin{gather*}
\frac{d y}{d x}=f(x, y) \tag{1.5}\\
y\left(x_{0}\right)=y_{0}
\end{gather*}
$$

$$
\begin{equation*}
\left(6 x y-y^{3}\right) d x+\left(4 y+3 x^{2}-3 x y^{2}\right) d y=0 \tag{7}
\end{equation*}
$$

(b) Solve the initial value problem

$$
\begin{equation*}
x \frac{d y}{d x}=y+\sqrt{x^{2}-y^{2}} \quad y\left(x_{0}\right)=0, \text { where } x_{0}>0 . \tag{8}
\end{equation*}
$$

3. (a) Find the general and singular solution of the equation

$$
\begin{equation*}
p=\log (p x-y) \tag{7}
\end{equation*}
$$

(b) Solve

$$
\begin{align*}
& \frac{d y}{d x}+y=f(x), \text { where } f(x)=\left\{\begin{array}{rr}
2, & 0 \leq x<1 \\
0, & x \geq 1
\end{array}\right. \tag{8}\\
& \text { and } y(0)=0
\end{align*}
$$

4. (a) Solve the initial value problem

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0, y(0)=-3, y^{\prime}(0)=-1
$$

(b) Solve the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=2 e^{x}-10 \sin x \tag{8}
\end{equation*}
$$

5. (a) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=\tan x
$$

