Roll No.

Total Pages: 3

323201

May 2023

B.Sc. (H) Mathematics - II SEMESTER

B.Sc. Mathematics & Computing - II SEMESTER Real Analysis (BMH-201A)

Time: 3 Hours

Instructions:

Max. Marks: 75

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) Show that, for each x in R, there corresponds one and only one real number y(1.5)such that. x+y=y+x=0(b) For all real numbers x and y, show that (1.5) $|x+y| \leq |x| + |y|$ (1.5)

(c) Find the supremum and infimum of the following: 1. $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ----\}$ 2. $\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \pi + \frac{1}{4}, ----\}$ 3. $\{-1, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{4}, ----\}$

(d) Show that, (1.5) $\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$

(e) Define the following terms with example: (1.5)

1. Increasing Sequence Decreasing Sequence

3. Convergent Sequence

(f) Explain divergence criteria for sequence in R. (1.5)

(g) State Monotone subsequence theorem. (1.5)

(h) Explain the following: (1.5)

1. Limit Superior

2. Limit Inferior 3. Cauchy Sequence

(i) Explain comparison test for series. (1.5)

(j) Explain D'Alembert's ratio test for series. (1.5)

PART-B

- Q2 (a) State and prove 'Density Theorem'.
 - (b) For any real numbers 'a 'and 'b', Show that

$$1. ||a|-|b|| \leq |a-b|$$

$$2. |ab| = |a||b|$$

- (c) Explain the following terms:
 - 1. Supremum
 - 2. Infimum
 - 3. Completeness property of real numbers
- Q3 (a) State and prove Monotone Convergence Theorem.
 - (b) Let, $X = \langle x_n \rangle$, $Y = \langle y_n \rangle$ and $Z = \langle z_n \rangle$ are sequences of real numbers such that, $x_n \leq y_n \leq z_n$; for all $n \in \mathbb{N}$.

 And let, $\lim \langle x_n \rangle = \lim \langle z_n \rangle = M$.

 Then show that, $Y = \langle y_n \rangle$ is convergent and $\lim \langle y_n \rangle = M$.
 - (c) Prove that a sequence in real numbers can have at most one limit.
- Q4 (a) State and prove Bolzano Weierstrass theorem.
 - (b) Prove that every convergent sequence of real numbers is a Cauchy sequence.
 - (c) Prove that, a Cauchy sequence of real numbers is bounded.
- Q5 (a) Explain Leibnitz's rule for convergence of an Alternating series and hence test the convergence of the following series:

$$\frac{1}{6} - \frac{2}{11} + \frac{3}{16} - \frac{4}{21} + \frac{5}{26} - \dots - \infty$$

(b) Test the convergence of the following series:

$$1. \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n^2 - n + 1}$$

$$3. \sum_{n=1}^{\infty} \frac{n}{2^n}$$

$$4. \sum_{n=1}^{\infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n/2}}$$

$$5. \sum_{n=2}^{\infty} \frac{1}{n \log n}$$

-		
Q6 (a)	What do you understand by bounded sequence? Show that a convergent sequence of real numbers is bounded.	(4)
(b)	Let $X = x_n$ and $Y = y_n$ be sequences of real numbers that converges to x and y respectively. Prove that, the sequence $X + Y = \langle x_n + y_n \rangle$ converges to $x + y$.	(4)
(c)	State and prove Archimedean Property.	(7)
Q7 (a) (b)	State and prove "Cauchy's convergence criterion". Explain the following test for series with example: a. Cauchy's Integral test	(7) (8)
	b. Cauchy's Integral test c. Limit Comparison test d. Caushy's criterion for series.	