May 2023

B.Sc. (H) Mathematics (Re-Appear) - IV SEMESTER Analytical Geometry (BMH-401)

Time: 3 Hours
Max. Marks:75
The: 3 Hours
Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) Find the eccentricity of the ellipse $3 x^{2}+2 y^{2}=1$.
(b) Write the equation of the tangent to the curve $a x^{2}+2 h x y+b y^{2}=0$ at the point $(-1,-2)$.
(c) Find the cartesian coordinates of the point whose polar coordinates are ($2, \frac{\pi}{4}$).
(d) Find the nature of the conic $\frac{1}{r}=1-2 \cos \theta$.
(e) What is great circle?
(f) Define enveloping cone.
(g) Write the general equation of an elliptic parabolid.
(h) Write the equation of the director circle of the conic $x^{2}+y^{2}=1$ at the point (1.5) $(1,-1)$.
(i) What is chord of contact of a conic?
(j) Write the general equation for x axis in $x y z$ system.

PART - B

Q2 (a) Find the coordinates of the center of the conic

$$
\begin{equation*}
2 x^{2}-72 x y+23 y^{2}-4 x-28 y-48=0 \tag{7}
\end{equation*}
$$

(b) Trace the following conic and reduce it to the canonical form

$$
\begin{equation*}
36 x^{2}+24 x y+29 y^{2}-72 x+126 y+81=0 \tag{7}
\end{equation*}
$$

Q3 (a) Find the equations of the tangent and normal to the parabola $y^{2}=9 x$ at the point $(1,-3)$.
(b) Find the equation of the sphere on the join of $(-1,3,2)$ and $(5,7,-6)$ as diameter. Find its center also.
Q4 (a) Find the equation of the cone whose vertex is the origin and base is the circle

$$
\begin{equation*}
x^{2}+z^{2}=b^{2}, y=a \tag{7}
\end{equation*}
$$

(b) The section of a cone whose vertex is P and guiding curve is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ by the plane $x=0$ is a rectangular hyperbola. Find the locus
of P.

Q5 (a) Find the equation of the enveloping cone of the sphere $x^{2}+y^{2}+z^{2}-2 x+$ $4 z=1$ at the origin.
(b) Find the equation of the cylinder whose generators are parallel to the x-axis and passing through the curve $a x^{2}+b y^{2}+c z^{2}=1, l x+m y+n z=p$.

Q6 (a) Find the equation of the tangent plane to the surface $a x^{2}+b y^{2}+c z^{2}=1$ which are parallel to the plane $l x+m y+n z=0$.
(b) Find the condition that the plane $l x+m y+n z=1$ touches the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Q7 (a) Find the equation of the right circular cylinder whose axis is $x=2 y=-z$ and radius is 4 .
(b) Show that the equations $\frac{l}{r}=1+e \cos \theta$ and $\frac{l}{r}=-1+e \cos \theta$ represent the same conic.

