May 2023

B.Sc. (H) Mathematics (Re-Appear) - IV SEMESTER Analytical Geometry (BMH-401)

Time: 3 Hours Instructions: Max. Marks:75

- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.

<u>PART –A</u>

Q1	(a)	Find the eccentricity of the ellipse $3x^2 + 2y^2 = 1$.	(1.5)
	(b)	Write the equation of the tangent to the curve $ax^2 + 2hxy + by^2 = 0$ at the point (-1, -2).	(1.5)
	(c)	Find the cartesian coordinates of the point whose polar coordinates are (2, $\frac{\pi}{4}$).	(1.5)
	(d)	Find the nature of the conic $\frac{1}{r} = 1 - 2 \cos \theta$.	(1.5)
	(e)	What is great circle?	(1.5)
	(f)	Define enveloping cone.	(1.5)
	(g)	Write the general equation of an elliptic parabolid.	(1.5)
	(h)	Write the equation of the director circle of the conic $x^2 + y^2 = 1$ at the point (1,-1).	: (1.5)
	(i)	What is chord of contact of a conic?	(1.5)
	(j)	Write the general equation for x axis in xyz system.	(1.5)

<u>PART – B</u>

			(7)
Q2	(a)	Find the coordinates of the center of the conic	(/)
		Find the coordinates of the point $22u^2 - 4x - 28u - 48 = 0$	
		$2x^2 - 72xy + 23y^2 - 4x - 20y - 40 = 0$	

- (b) Trace the following conic and reduce it to the canonical form $36x^2 + 24xy + 29y^2 - 72x + 126y + 81 = 0$ (8)
- Q3 (a) Find the equations of the tangent and normal to the parabola $y^2 = 9x$ at the (7) point (1, -3).
 - (b) Find the equation of the sphere on the join of (-1, 3, 2) and (5, 7, -6) as (8) diameter. Find its center also.
- Q4 (a) Find the equation of the cone whose vertex is the origin and base is the circle (7) $x^2 + z^2 = b^2, y = a$
 - (b) The section of a cone whose vertex is P and guiding curve is the ellipse (8) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0$ by the plane x = 0 is a rectangular hyperbola. Find the locus

of P.

- Q5 (a) Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 2x + (7)$ 4z = 1 at the origin.
 - (b) Find the equation of the cylinder whose generators are parallel to the x-axis and passing through the curve $ax^2 + by^2 + cz^2 = 1$, lx + my + nz = p. (8)
- Q6 (a) Find the equation of the tangent plane to the surface $ax^2 + by^2 + cz^2 = 1$ which are parallel to the plane lx + my + nz = 0.
 (7)
 - (b) Find the condition that the plane lx + my + nz = 1 touches the ellipsoid (8) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- Q7 (a) Find the equation of the right circular cylinder whose axis is x = 2y = -z and (7) radius is 4.
 - (b) Show that the equations $\frac{l}{r} = 1 + e \cos \theta$ and $\frac{l}{r} = -1 + e \cos \theta$ represent the (8) same conic.