Total Pages : 2

Roll No.

323406

May 2023

B.Sc. (H) MATHEMATICS (Re-Appear) - IV SEMESTER RING THEORY AND LINEAR ALGEBRA (BMH-402)

Max. Marks:75

(1.5)

Time: 3 Hours Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.

- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

<u> PART -A</u>

Q1	(a)	Define the following terms:	
-		1. Ring	
		2. Subring	
		3. Field	(1.5)
•	(b)	Show that, the characteristic of an integral domain is entited zero of a prime	(1.5)
	(c)	Explain Ideal test.	
	(9)	I Blue ring Show that the identity map I on R is a ring homomorphism.	(1.5)
	(d)	Let R be a filly. Show that the results,	(1.5)
	(e)	Define the following terms:	
		1. Ring Homomorphism	
		2. Ring Isomorphism	202
		3. Kernel of Ring Homomorphism	(1.5)
	(f)	Differentiate between Linearry independent and and (7)	(1.5)
	പ്ര	Show that, $Symm(M_n(F))$ forms a subspace of $M_n(F)$.	(1.0)
	(6)	at the union of two subspaces of a vector space V need not form a subspace	(1.5)
	(h)	Show that the union of two subspaces	(1 5)
	~~~	of V.	(1.5)
	(i)	Differentiate between reality	(15)
	~	Define the following terms:	(1.5)
	Ű	1 Linear Transformation	
		2. Identity transformation	
		Z. Identity water and	

3. Zero Transformation

### PART -B

<ul><li>Q2 (a) Prove that, every field is an integral domain. Is converse true? Justify your answer.</li><li>(b) Define the term Ideal and hence prove that the union of two ideals is an deal if and only if one of them is contained in the other one.</li></ul>	(8) (7)
<ul> <li>Q3 (a) State and prove First Isomorphism theorem for rings.</li> <li>(b) Prove the followings: <ol> <li>Let, Ø : R → S</li> <li>be a ring homomorphism. If Ø is an isomorphism then show that, Ø⁻¹ is also an isomorphism.</li> <li>Let, Ø : R → S</li> <li>be a ring homomorphism. If R is commutative then show that, Ø(R) is also commutative.</li> </ol> </li> </ul>	(8) (7)
<ul> <li>Q4 (a) Show that Rⁿ forms a vector space over the field of real numbers.</li> <li>(b) Show that,</li> <li>1. {1, √3} is linearly independent in R over the field of rational numbers.</li> <li>2. {1, √3, √5} is linearly independent in R over the field of rational numbers.</li> </ul>	(8) (7)
<ul> <li>Q5 (a) State and prove Dimension Theorem.</li> <li>(b) Suppose that V and U be finite dimensional vector spaces over the field F. Then show that V is isomorphic to U if and only if dim (V) = dim (U).</li> </ul>	(8) (7)
Q6 (a) Let R be a commutative ring with unity and let M be a proper Ideal of R, Then show that $\frac{R}{M}$ is a field if and only if M is Maximal Ideal of R.	(8)
(b) State and prove Third Isomorphism theorem for rings.	(7)
Q7 (a) Let, $\beta = \{v_1, v_2, v_3,, v_n\}$ be a subset of a vector space V over F. Then show that $\beta$ forms a basis for V if and only if every element of V can be expressed uniquely as a linear combination of elements $v_1, v_2, v_3,, v_n$ .	(8)
<ul> <li>(b) Let V and U be vector spaces over a field F and let T, S : V → U be a linear transformations. Then show that,</li> <li>1. aT + S is linear, for all a ∈ F</li> <li>2. L(V, U) forms a vector space over F.</li> </ul>	<b>(7)</b>