May 2023
 B.Sc. (H) Mathematics - IV SEMESTER Ring Theory and Linear Algebra (BMH-402A)

Time: 3 Hours
Max. Marks:75
Instructlons: 1. It is compulsory to answer all the questions (1.5 marks each) of Part $-A$ in short
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Let Z be the ring of integers and let 6 Z be the ideal, then show that $Z / 6 Z$ is not (1.5) an integral domain.
(b) Find the units of the ring $\mathbf{Z}_{\boldsymbol{n}}$.
(c) Show that, the characteristic of an integral domain is either zero or prime number.
(d) State second Isomorphism theorem for rings.
(e) Let \emptyset be a ring homomorphism from a ring R to a ring S . Then show that, Ker \emptyset is an ideal of R.
(f) Show that, the set

$$
\begin{equation*}
S=\left\{A \in M_{2}(R):|A|=0\right\} \tag{1.5}
\end{equation*}
$$

under the usual operations is not a vector space.
(g) Show that the union of two subspaces of a vector space V need not form a subspace (1.5) of V.
(h) Differentiate between Linearly independent and linearly dependent vectors.
(i) Define the following terms:
a. Linear Transformation
b. Linear Operator
c. Dialation Operator
(j) Let, $\boldsymbol{T}: \boldsymbol{R}^{\mathbf{3}} \rightarrow \boldsymbol{R}^{\mathbf{2}}$ be the linear transformation defined by

Find $N(T)$ and $R(T)$.

$$
\begin{equation*}
T(x, y, z)=(x, y-3 z) \tag{1.5}
\end{equation*}
$$

PART-B

Q2 (a) Give an example of the following:

1. A non-commutative ring without multiplicative identity.
2. A finite non-commutative ring.
3. An infinite integral domain with non-zero characteristic.

- 4. A ring with unity which has a subring without unity.

5. A right ideal which is not a left ideal.
(b) Let $Z[x]$ be the ring of all polynomials with integer coefficients. Let I be a subset of $Z[x]$ consisting of all polynomials with constant term zero. Then show that, \boldsymbol{I} is an ideal of $Z[x]$. Further show that,

$$
\begin{equation*}
I=\langle x\rangle \tag{5}
\end{equation*}
$$

(c) Prove the followings:

1. Both $\mathbf{2 Z}$ and $\mathbf{3 Z}$ are maximal ideals in Z.
2. In a Boolean ring R every prime ideal I is a maximal ideal.

Q3 (a) Determine all ring homomorphism from Z_{12} to Z_{30}.
(b) Let R be a commutative ring and suppose that, Char $\boldsymbol{R}=\boldsymbol{p}$, where \boldsymbol{p} is a prime number. Then show that, the mapping,

$$
f: R \rightarrow R
$$

defined by

$$
f(x)=x^{p} \quad ; \forall x \in R
$$

is a ring homomorphism.
Q4 (a) Show that $R^{\boldsymbol{n}}$ forms a vector space over the field of real numbers.
(b) Show that,

1. $\{1, \sqrt{3}, \sqrt{5}\}$ is linearly independent in R over the field of rational numbers.
2. $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$ is linearly independent in R over the field of rational numbers.

Q5 (a) State and prove " Sylvester's Theorem".
(b) Suppose that, V and U are two vector spaces over the field F such that, $\left\{x_{1}, x_{3}, x_{3},---, x_{n}\right\}$ is a basis for V . Then show that for
$\left\{z_{1}, z_{2}, z_{3},---z_{n}\right\} \in U$ there exists exactly one linear transformation

$$
T: V \rightarrow U
$$

such that,

$$
\begin{equation*}
T\left(x_{i}\right)=z_{i} ; \forall 1 \leq i \leq n \tag{8}
\end{equation*}
$$

Q6 (a) Define Principal Ideal Domain and hence show that the ring of integers $(Z,+, \cdot)$ is a principal ideal domain.
(b) Show that,

$$
\begin{equation*}
\frac{Z[x]}{\langle x\rangle} \cong Z \tag{7}
\end{equation*}
$$

Q7 (a) State and prove Replacement Theorem.
(b) Let

$$
T: V \rightarrow U
$$

be an invertible linear transformation. Then show that V is a finite dimensional vector space if and only if U is a finite dimensional vector space.
(c) Find the matrix representation of the linear operator,
given by

$$
T(x, y, z)=(2 y+z, x-4 y, 3 x)
$$

relative to the basis

$$
\beta=\{(1,0,-1),(1,1,1),(1,0,0)\}
$$

