May 2023

B.Sc. (H) MATHEMATICS - VI SEMESTER BASICS OF STATISTICS (DEMH-603)

Max. Marks:75

Time: 3 Hours Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of calculator is allowed.

PART -A

-			
Q1	(a)	Define the following terms: 1 Probability	(1.5)
		2. Independent events	
	(b)	3. Mutually exclusive events Three coin are tossed, find the probability of getting at least 2 heads.	(1.5)
	(c)	Find the mean of uniform probability distribution:	(1.5)
	(e)	$f(x) = \frac{1}{n}$; $\forall x = 1, 2, 3,n$	*
	(d)	Explain merits and demerits of median.	(1.5)
	(e)	What are the requisites for an ideal measure of the central tendency?	(1.5)
1.~	(f)	In the asymmetrical distribution mean is 16 and the median is 20, calculate mode.	(1.5)
	(g)	Differentiate between positive correlation and negative correlation.	(1.5)
	(h)	If, $f(x) = Ke^{- x }$, is a probability density function in $-\infty < x < \infty$. Find the	(1.5)
	(i)	Define the following terms: 1. Binomial probability distribution	(1.5)
		2. Poisson probability distribution	a." .
		3. Normal probability distribution	
	(i)	Differentiate between correlation analysis and regression analysis.	(1.5)

PART -B

_	a 1 1 /	and made	of the following de	ata	
02 (1)	Calculate mean	, median and mode	of the following ac	aua.	
V2 [a]	Curvature more				

Marks	No. of Students
Above 0	80
Above 10	77
Above 20	72
Above 30	65
Above 40	55
Above 50	43
Above 60	28
Above 70	16
Above 80	10
Above 90	8
Above 100	0

(8)

(b) Calculate mean, standard deviation and variance for the following table giving the age distribution of 542 members:

Age in years	No. of members
20-30	3
30-40	61
40-50	132
50-60	153
60-70	140
70-80	51
80-90	2

Q3 (a) Calculate Karl Pearson's coefficient of correlation between x and y for the following data:

x	65	66	67	67	68	69	70	72
У	67	68	65	68	72	72	69	71

(b) From the given data obtain two regression equations using the method of least square.

X	2	4	6	8	10
У	5	7	9	8	11 .

- Q4 (a) Cards are dealt one by one from a well shuffled pack of playing cards until an ace (5) appears. Find the probability that exactly "n" cards are dealt before an ace appears.
 - (b) An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or 8 ?
 - (c) Two integers are selected at random from 1 to 11. If the sum is even, find the probability that both the numbers are odd.
- Q5 (a) Fit a binomial distribution to following data, when tossing 5 coins:

x	0	• 1	2	3	4	5
f	2	14	20	34	22	8

(b) A random variable X has the following distribution:

X	-2	-1	0	1	2	3
P(X)	0.1	K	0.2	2K	0.3	K

Find the value of K and hence calculate variance.

(c) If the probability density function of a random variable is given by:

$$f(x) = \begin{cases} K(1-x^2) & , & 0 \le x \le 1 \\ 0 & , & elsewhere \end{cases}$$

Find the value of K and hence calculate mean.

(7)

(8)

(5)

(5)

(7)

(4)

(4)

and Rs. 3400 respectively. Find the missing values:

Wages in Rs.	No. of Employees
0-1000	4
1000-2000	16
2000-3000	f_1
3000-4000	f2
4000-5000	f_3
5000-6000	6
6000-7000	4
Total	230

(b) Ten competitors in a fashion contest are ranked by three judges in the following orders:

1 st	1	6	5	10	3	2	4	9	7	8
2 nd	3	5	. 8	4	7	10	2	1 .	6	9
3 rd	6	4	9	8	1	2	3	10	5	7

Use the correlation coefficient to determine which pair of judges has the nearest approach to common taste in fashion.

- Q7 (a) Players A and B throw a pair of dice. A wins if "he throws 6 before B throws 7" and "B if he throws 7 before A throw 6". If A begins, show that his chance of winning is 30/61.
 - (b) X is normally distributed and the mean of X is 12 and SD is 4. Find out the probabilities of following :

(i) $X \ge 20$ (ii) $X \leq 20$ (iii) $0 \leq X \leq 12$. (Z distribution at 2 is 0.4772 and Z distribution at 3 is 0.4987).

Q6 (a) The median and mode of the following wage distribution are known to be Rs. 3350

(8)

(7)

(8)

(7)