Sr. No 322203

May 2023 B.Sc.(Chemistry) II SEMESTER Basic Calculus (OMTH-202)

Time: 3 Hours Instructions:

322203

Max. Marks:75

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1	(a)	Define limit and differentiability of a function at a point c.	(1.5)
	(b)	Discuss the continuity of the function $f(x) = \begin{cases} 2x - 1 & ; x < 0 \\ 2x + 1 & ; x \ge 0 \end{cases}$	(1.5)
:	(c)	What is the value of $\int_2^3 (x^2) dx$	(1.5)
	(d)	Write down the procedure of finding maxima and minima of a	(1.5)
		function by first derivative test.	
	(e)	State second fundamental theorem of integral calculus.	(1.5)
	(f)	Prove that the function $f(x) = 5x - 3$	(1.5)
	• 6	is continuous at $x = 0$ and at $x = 5$	
	(g)	What are direction cosines and direction ratios of a vector.	(1.5)
	(h)	Find out the slope of the tangent to the curve $y = x^3 - 3x + 2$ at the point whose x coordinate is 3	(1.5)
×	(i)	Define collinear vectors with suitable example.	(1.5)
	(i)	Explain scalar triple product with example. What happen if we interchange any two vectors.	(1.5)

PART -B

- Q2 (a) Find out all the points of local maxima and local minima of the (8) function $f(x) = x^3 3x + 3$
 - (b) Find out the interval in which the function $f(x) = 4x^3 - 6x^2 - 72x + 30$ is (i) increasing (ii) decreasing

322203/75/11/118

PT.

(7)

Q3	(a)	Differentiate $e^{sec^2x} + 3cos^{-1}x$	(8)
	(b)	If $y = sin^{-1}x$	(7)
		Find out the value of $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx}$	
Q4	(a)	Find out $\frac{dy}{dx}$ if $y^x + x^y + x^x = a^2$	(8)
÷	(b)	Differentiate sin $(\cos(x^2))$ with respect to x	(7)
Q5	(a)	Evaluate $\int_0^2 (x^2 + 1) dx$ as a limit of sum.	(8)
	(b)	Solve $\int \frac{x^4}{(x-1)(x^2+1)} dx$	(7)
Q6	(a)	Evaluate $\int (\sqrt{\cot x} + \sqrt{\tan x}) dx$	(8)
	(b)	Find out the area enclosed by the circle $x^2 + y^2 = a^2$	(7)
	e ⁹		-
Q7	(a)	Find a vector in the direction of $5\hat{\imath} - \hat{\jmath} + 2\hat{k}$ which has magnitude 8 unit.	(8)
	പ	$\vec{i} = \vec{r} + 3\hat{i} + 3\hat{i} - 5\hat{k}$ then show	(7)

(b) If $\vec{A} = 5\hat{\imath} - \hat{\jmath} - 3\hat{k}$ and $\vec{B} = \hat{\imath} + 3\hat{\jmath} - 5\hat{k}$ then show that $\vec{A} - \vec{B}$ and $\vec{A} + \vec{B}$ are perpendicular.