May 2023, Reappear

B.Sc. (H) PHYSICS SEMESTER -IV

Basic Instrumentation Skills (SECP-03)

Time: 3 Hours Instructions:

- It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. Max. Marks:75 1.
- Answer any four questions from Part -B in detail. 2.
- Different sub-parts of a question are to be attempted adjacent to each other. З.

PART -A

Q1 (a	or an instrument?	(1.5)
(b) Can a multimeter be used for measuring very low resistances? What are the	e (1.5)
	limitations in such measurements?	
(c)	List the advantages of digital instruments over analog instruments.	(1.5)
(d)	What are the advantages of an electronic voltmeter over conventional	(1.5)
	voltmeter?	1 (1.5)
(e)	What is the difference between regulated and unregulated power supply?	(1 5)
(f)	Calculate the value of multiple resistance on the 50 V range of a dc voltmeter	(1.5)
	that uses a 500 μ A meter movement with an internal resistance of 1 k Ω	(1.5)
(g)	What is the role of Visual persistence in CRO?	(1.5)
(h)	What are the different types of AC millivoltmeter?	(1.5)
(i)	Draw the block diagram of a digital multimeter	(1.5)
(j)	Discuss the frequency ratios of two signals on the basis of the Lissajous patterns formed.	
	PART -B	
Q2 (a)	Explain the principles of measurement of dc voltage, dc current, ac voltage, ac current and resistance by using a multimeter.	(10)
	Discuss the loading effect of a multimeter with the help of an example.	(5)

- Q3 (a) Draw the block diagram of electronic voltmeter and explain its working (10) principle.
 - (b) Explain the working principle of digital voltmeter.
- Q4 (a) Explain how the frequency, voltage, and phase difference is measured using a (10) CRO.
 - (b) What are the Lissajous figures? Discuss how they are produced in a dual (5)channel CRO.
- Q5 (a) Explain the working principle of DSO.

(10)

(5)

(b) A Maxwell Bridge is used to measure inductive impedance. At balance, the (5)bridge constants are $C_1 = 0.01 \ \mu\text{F}$, $R_1 = 470 \ \text{k}\Omega$, $R_2 = 5.1 \ \text{k}\Omega$, $R_3 = 100 \ \text{k}\Omega$. Find the series equivalent of unknown impedance.

Q6 (a) Draw the Circuit of Anderson's Bridge and derive the balancing conditions. (10) (5)

· WELLEN AND

- (b) A De-Sauty's bridge is operating at 1 kHz frequency. The constants for the bridge are $R_1 = 4 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$ and $C_1 = 3 \mu F$. Find the value of the other capacitor C_2 .
- Q7 (a) Draw the Block diagram of a CRO. Give the specifications of CRO. Explain the (10) functioning of its horizontal deflection system. (5)
 - (b) Briefly discuss the role of 'Time Base circuit' and 'synchronization circuit' in (5) CRO.