Sr. No 321205

May 2023

B.Sc.(Physics) - II SEMESTER (Re-Appear)

Linear Algebra (OMTH-201)

Time: 3 Hours

Max. Marks:75

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short. Instructions:

- 2. Answer any four questions from Part -B in detail.
- Different sub-parts of a question are to be attempted adjacent to each other. 3.
- 4. Any other specific instructions

PART -A

Q1	(a)	Prove that the only Eigen values that an Idempotent Matrix can possess are either	(1.5)
		zero or one.	
	(b)	State Triangle's inequality.	(1.5)
5	(c)	Find the Rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$.	(1.5)
	(d)	If A and B are orthogonal matrices prove that AB is also orthogonal.	(1.5)
	(e)	Define orthogonality and orthonormality of Inner Product Spaces.	(1.5)
	(f)	Define Rank and Nullity of a Linear Transformation.	(1.5)
	(g)	By Giving suitable example show that union of two subspaces may not be a subspace	(1.5)
		of a vector space.	
	(h)	Define the following terms:	(1.5)
		1. Linear combination	÷.,•
		2. Spanning set	
	(i)	Show that,	(1.5)
		$ (\alpha,\beta) \leq \alpha \beta $	1.00 1.00
	(j)	Check whether the linear Transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by	(1.5)

T(x, y, z) = (x + z, x - z, y) is invertible or not.

PART -B

			2.3
Q2	(a)	Find the Eigen vectors and their corresponding eigen vectors of the matrix	(8)
3 (A) 2) ¹	$A = \begin{bmatrix} 3 & 0 & 0 \\ 8 & 4 & 0 \\ 4 & 2 & 5 \end{bmatrix}$ Also find eigen values of A^{-1} .	
		l6 2 5]	
	(b)	$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \end{bmatrix}$	(7)
		Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ to its normal form and hence find its Rank.	
		[0 0 7 5]	
• • • •			(0)
Q3	(a)	Find a matrix P which transforms the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to its diagonal form .	(8)
		l3 1 1] Hence calculate A ³ .	
	പ	For what values of parameters λ , μ do the system of equations	(7)
	(0)		
		$x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ have i) no solution ii) unique solution iii) more than one solution?	
0		State and Prove Rank –Nullity Theorem .	(8)
Q4			(7)
	(b)	Check whether the set $(1,1,2)$, $(1,2,5)$ and $(5,3,4)$ is a basis of \mathbb{R}^3 or not?	(7)
Q	5 (a)	State and prove Cauchy Schwatz Inequality.	(8)
•	(b) Show that $T: \mathbb{R}^4 \to \mathbb{R}^4$ defined by $T(x, y, z, t) = (2x, 3y, 0, 0)$ is a linear Transformation. Find its rank and nullity.	(7)
Q	6 (a		(8)
÷.,		$T(x, y, z) = (x + y, x - \dot{z}, y)$ show that T is invertible and hence calculate T ⁻¹ .	
	(b) If V and W are finite dimensional vector spaces over a same field F then show that V is isomorphic to W iff Dim V=Dim W	(7)
	7	If T is a linear operator defined by	(15)
Q			
		$T: \mathbb{R}^3 \to \mathbb{R}^3$,	

T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z) then find the matrix of T with respect to the ordered basis $B = \alpha_1 = (1,0,1), \alpha_2 = (-1,2,1), \alpha_3 = (2,1,1)$