May 2023

B.Sc.(Physics) - II SEMESTER (Re-Appear)

Linear Algebra (OMTH-201)

Max. Marks:75
Time: 3 Hours
Instructions: 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part - B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.
4. Any other specific instructions

PART - A

Q1 (a) Prove that the only Eigen values that an Idempotent Matrix can possess are either (1.5) zero or one.
(b) State Triangle's inequality.
(c) Find the Rank of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.
(d) If A and B are orthogonal matrices prove that $A B$ is also orthogonal.
(e) Define orthogonality and orthonormality of Inner Product Spaces.
(f) Define Rank and Nullity of a Linear Transformation.
(g) By Giving suitable example show that union of two subspaces may not be a subspace (1.5) of a vector space.
(h) Define the following terms:

1. Linear combination
2. Spanning set
(i) Show that,

$$
|(\alpha, \beta)| \leq\|\alpha\|\|\beta\|
$$

(j) Check whether the linear Transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+z, x-z, y)$ is invertible or not.

PART-B

Q2 (a) Find the Eigen vectors and their corresponding eigen vectors of the matrix $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 8 & 4 & 0 \\ 6 & 2 & 5\end{array}\right]$.Also find eigen values of A^{-1}.
(b) Reduce the matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$ to its normal form and hence find its Rank.

Q3 (a) Find a matrix P which transforms the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$ to its diagonal form .
Hence calculate A^{3}.
(b) For what values of parameters λ, μ do the system of equations
$x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have i) no solution ii) unique solution iii) more than one solution?

Q4 (a) State and Prove Rank -Nullity Theorem.
(b) Check whether the set $(1,1,2),(1,2,5)$ and $(5,3,4)$ is a basis of R^{3} or not ?

Q5 (a) State and prove Cauchy Schwatz Inequality.
(b) Show that $T: R^{4} \rightarrow R^{4}$ defined by $T(x, y, z, t)=(2 x, 3 y, 0,0)$ is a linear Transformation. Find its rank and nullity.

Q6 (a) If $T: R^{3} \rightarrow R^{3}$ is a linear Transformation defined by
$T(x, y, z)=(x+y, x-\dot{z}, y)$ show that T is invertible and hence calculate T^{-1}.
(b) If V and W are finite dimensional vector spaces over a same field F then show that V is isomorphic to W iff Dim V=Dim W

Q7 If T is a linear operator defined by
$T: R^{3} \rightarrow R^{3}$,
$T(x, y, z)=(3 x+z,-2 x+y,-x+2 y+4 z)$ then find the matrix of T with respect to the ordered basis $B=\alpha_{1}=(1,0,1), \alpha_{2}=(-1,2,1), \alpha_{3}=(2,1,1)$

