May 2023, Reappear B.Sc (H) Physics, IV SEMESTER Elements of Modern Physics

Time: 3 Hours

Max. Marks:75

In	sta	-	-		
III	SU	·u	CL	m	ns:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of non-programmable simple calculator is allowed.

٠.,	PART -A	
Q1 (a)	Explain why electron do not exist in nucleus using uncertainty principle	(1.5)
(b)	What are canonical conjugate pairs?	(1.5)
(d)	Find the mass number A of a nucleus having radius 3.46 fm.	(1.5)
(d)	What are magic numbers and why they are so called?	(1.5)
(c)	What is energy equivalent of 1 amu?	(1.5)
(f)	Find the intensity of a laser beam of 100mW power and having a diameter o 1.3 m. Assume the intensity to be uniform.	f (1.5)
(g)	What are conditions for a wave function to be acceptable.	(1.5)
(h)	What is momentum of an electron if its de Broglie wavelength is 1Å?	(1.5)
(i)	Explain the significance of Carbon cycle in the fusion reaction inside stars.	(1.5)
(j)	What is linear operator? Is cosine a linear operator?	(1.5)
	PART -B	
Q2 (a)	scattering is independent of the incident wavelength.	1
(b)	Light of wavelength 3000 Å falls om a metal surface having a work function of 2.3 eV. Calculate the maximum velocity of the ejected photoelectron.	f (7)

- Q3 (a) Solve the Schrodinger equation for a particle in a one-dimensional rigid box of width L and obtain its eigenvalues. Discuss the probability of finding the particle at various points in different quantum states.
 - (b) Find the relation between group velocity and phase velocity for dispersive as (7) well as non-dispersive medium.
- Q4 (a) Describe two opposing forces between particles in the nucleus. Plot N-Z graph and explain why the ratio of neutrons to protons required for a stable nuclide increases with increasing number of protons in a nucleus.
 - (b) State the law of radioactive decay. If 99% of a radioactive element (7) disintegrates in 36 hours. What is the half-life of this isotope?
- Q5 (a) What are Einstein's coefficients A & B? Derive relation between them. Discuss (8) their significance in context of laser operation.
 - (b) What is a laser? Discuss the construction and working of a He-Ne laser. How is it superior to Ruby laser? (7)

Q6	(a)	Discuss the neutrino hypothesis for the emission of beta particles from a nucleus. In what way is the energy spectrum of beta emission different from that of alpha emission.	(8)
	(b)	What do you mean by tunnel effect? Give any two examples of tunneling. Why	(7)
		is it a quantum-mechanical phenomenon?	
Q7		Write short notes on:	
	(a)	Gamma emission	(5)
	(b)	Internal conversion	(5)
	(c)	Pair production	(5)
