May 2023, Reappear

B.Sc. (H) Physics, Semester-IV Mathematical Physics-III (BPH-401)

Time: 3 Hours

Max. Marks:75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- Q1 (a) Show that the function u = 3x-2xy is a harmonic function. (1.5)
 - (b) Express the complex number $z = \frac{1+7i}{(2-i)^2}$ into polar form. (1.5)
 - (c) Define an analytic function f(z). What are the necessary and sufficient condition for (1.5) f(z) to be analytic in a region R.
 - (d) Evaluate $\int_C \frac{dz}{z(z+\pi i)} dz$ where C is a circle |z+3i|=1, by Cauchy's integral formula. (1.5)
 - (e) Find the roots of $z^4 + 1 = 0$. (1.5)
 - (f) Discuss the singularity of the function $f(z) = \sin\left(\frac{1}{z-a}\right)$ at z = a. (1.5)
 - (g) Explain the change of scale property of Laplace transform. (1.5)
 - (h) If $F\{f(t)\} = F(s)$ then show that $F\{f(x-a)\} = e^{isx}F(s)$ (1.5)
 - (i) Evaluate the Fourier Transform of Dirac-delta function. (1.5)
 - (j) Find the Laplace transform of (1+ sin 2t). (1.5)

PART -B

- Q2 (a) Let f(z) = u(x,y) + iv(x,y) be an analytic function. If u = 3x-2xy, then find the imaginary part of f(z).
 - (b) Evaluate $\int \frac{z^2 2z}{(z+1)^2 (z+2i)} dz$; using residue theorem where c is the circle |z| = 2. (8)
- Q3 (a) Evaluate $\int \frac{z^2+1}{(z+1)(z+2)} dz$; using Cauchy's integral formula where c is the circle (7)

 $|z|=\frac{3}{2}$

- (b) By contour integration, prove that $\int_{0}^{\infty} \frac{\sin mx}{x} dx = \frac{\pi}{2}.$ (8)
- Q4 (a) Show that $\log z = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} + \dots$ (5)
 - (b) Expand $\cos z$ in a Taylor series about $z = \pi/4$. (5)

	(c)	Z	(5)
		Expand $f(z) = \frac{z}{z^2 - 3z + 2}$ in a Laurent series in the region $ z - 1 > 1$	
Q5	(a)	Find the Fourier transform of the function $f(x) = \begin{cases} 1 & \text{for } x < a \\ 0 & \text{for } x > a \end{cases}$	(7)
		Find the Fourier transform of the function $f(x) = \{0 \text{ for } x > a\}$	(8)
	(b)	State and Prove convolution theorem on Fourier Transform.	
06	(a)	Find the Fourier Cousine transform of $f(x) = e^{-ax}$.	(7)
QU			(8)
	(p)	Obtain the Laplace transform of t ² e ^t .sin4t.	(7)
Q7	(a)	Evaluate the integral $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt$ and $\int_{0}^{\infty} \frac{\sin t}{t} dt$ using Laplace transformation.	(8)
	(b)	Evaluate $L^{-1}\left\{\frac{3s+1}{(s-1)(s^2+1)}\right\}$ using partial fraction method.	(6)
