B.Sc.(H) Physics (Reappear) IV SEMESTER Digital Systems \& Applications (BPH-403)

Time : 3 Hours]
[Max. Marks : 75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Write the hexadecimal equivalent for the number (59.5) 10 .
(b) Implement AND gate circuit using NOR gates only.
(c) Express +39 and -25 using 8 -bits in 2 's complement form.
(d) What is the difference between combinational and sequential circuits?
(e) Draw the circuit of 4-bit ODD parity generator using XOR gate.
(f) How many minimum output lines are there in an encoder circuit which has 90 input lines?
(g) Draw the circuit of S-R latch using NOR gates and ite its truth table.
(h) Define ROM and RAM memories.
(i) Give any two applications of IC-555. Why the IC is ${ }^{\circ}$ named so?
(j) Write main features of 8085 microprocessor. (1.5)

PART-B

2. (a) Draw the Diode Logic (DL) circuit for AND gate and explain its working.
(b) Prove the following using Boolean Algebra and implement simplified expression using
NAND gates only. $A B+A \bar{B} C+B \bar{C}=A C+B \bar{C}$.
(c) What is the limitation of Half-adder circuit? Draw the truth table and implement the circuits of half-adder and full-adder using NAND gates only.
3. (a) What do you mean by universal gate? Implement AND, OR, NOT and XOR gates using NAND gates only.(5)
(b) Discuss main points of minterm and maxterm expressions.
(b) Solve the following expression using K-map and implement the simplified expression using NAND gates only :

$$
\begin{equation*}
\mathrm{Y}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,7,11,15)+\Sigma d(0,2,5) . \tag{5}
\end{equation*}
$$

a. (a) What is a multiplexer circuit? Implement a 4-to-1 multiplexer and explain its working.
(b) Implement a BCD decoder, make a truth table and explain its working.
5. (a) Draw the MS flip-flop circuit and explain how it prevents racing problem.
(b) What are shift registers? Explain with suitable circuit diagram the working of a 4-bit shift register as a ring counter.
6. (a) Design a Mod-10 asynchronous up-counter, make the truth table, draw the waveform diagram and explain its working.
(b) Draw the circuit of an astable multivibrator using 555 timer IC and explain its operation. Derive the expression for its frequency.
7. (a) Differentiate between static and dynamic ROM's. (5)
(b) Discuss the arithmetic and logical groups of 8085 microprocessor circuit.

