- 6. (a) Explain the role of meta stable state in lasing action. Draw schematic and comment on 'what will happen in the absence of meta stable state?' (7)
 - (b) Can pair production occur in empty space? Justify your answer. (8)
- (a) Why the neutrino should exist and how was it discovered? Explain this in the light of theory of beta decay.
 (7)
 - (b) What is the difference between monochromaticity and directionality? Is it possible to get absolute monochromaticity in the laser light? What is the reason behind it?
 (8)

Roll No.

Total Pages : 4

321402

May, 2023 B.SC.(PHYSICS)- IV SEMESTER Elements of Modern Physics(BPH-402A)

Time : 3 Hours]

[Max. Marks : 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- (a) What do you mean by 'superposition principle'? Explain its importance in view of Young's double slit experiment. (1.5)
 - (b) An electron has a speed of 4×10^5 m/s accurate to 0.01%. With what fundamental accuracy can we locate the position of the electron? (1.5)
 - (c) Why is normalization of a wave function a stringent requirement for choosing a possible wave function for a physical problem? (1.5)
- (d) What will happen to the photoelectric current if you increase the frequency of the light but keep the intensity constant. Explain with the help of a graph. (1.5)
 321402/70/111/282

321402/70/111/282

4

- (e) Define coherence of light. Comment on the possibility of coherent sources.
- (f) How is emission of Beta-particles from radioactive nuclei even possible when they are not contained in the nuclei? (1.5)
- (g) Determine the ratio of nuclear radii of C-12 and 0-16. (1.5)
- (h) Explain the impossibility of an electron being in the nucleus as a consequence of the uncertainty Principle

 (1.5)
- (i) The work function of potassium is 2 eV. When the UV light of wavelength 3500 Å falls on its surface, calculate maximum kinetic energy of emitted photoelectron in eV.
 (1.5)
- (j) Explain one process where quantum mechanical tunneling is observed. (1.5)

PART-B

- (a) Derive Einstein's photoelectric equation. Explain how work function of a metal is related to the maximum kinetic energy of a photoelectron. (10)
 - (b) Calculate the binding energy in MeV per nucleon for 5B¹⁰ with mass number10.0161 a.m.u. Given that mass of a proton is 1.0081 a.m.u. and mass of a neutron is 1.008 a.m.u.

321402/70/111/282

2

- 3.
- (a) Explain basic postulates of quantum mechanics and their importance. (5)
 - (b) Obtain the value of transmission co-efficient and reflection coefficient quantum mechanically for a potential step. Explain the factors on which they depend upon.
 (7)
 - (c) Show that de Broglie wavelength associated with an electron of energy V electron-volts is approximately (1.227/√V) nm. (3)
- (a) Discuss the absorption, spontaneous emission and stimulated emission. Define and derive Einstein's A and B coefficients.
 (8)
 - (b) Describe nature of nuclear forces with the help of N-Z graph. What is the role of neutron number in the stability of the nucleus? (7)
- 5. (a) The life time of an excited state of an atom is about 10⁻⁸s. Calculate the minimum uncertainty in the determination of the energy of the excited state. (7)

3

(b) One gram of Ra-226 has an activity of 1 curie. Determine the half-life of Ra-226. Given Avogadro's number = 6.023×10^{23} . (8)

321402/70/111/282

[P.T.O.