
SEARCH SYSTEM FOR ONTOLOGY 

 

THESIS 

 

submitted in fulfillment of the requirement of the degree of  

 

DOCTOR OF PHILOSOPHY 

to   

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY 

by  

VANDANA DUA 

                                 Registration No. YMCAUST/Ph12/2010 

 

 

Under the Supervision of 

Dr. KOMAL KUMAR BHATIA 

 PROFESSOR 

  

 

Department of Computer Engineering 

Faculty of Engineering and Technology 

YMCA University of Science & Technology 

Sector-6, Mathura Road, Faridabad, Haryana, India 

 

JUNE, 2016 



 

 

 

 

 

 

 

 

 

 

DEDICATED 

to  

My Family  

 

 

  

 

 



 



 i

 

DECLARATION 

 

 

I hereby declare that this thesis entitled SEARCH SYSTEM FOR ONTOLOGY by 

VANDANA DUA, being submitted in fulfillment of the requirements for the Degree of 

Doctor of Philosophy in COMPUTER ENGINEERING under Faculty of  Engineering  and 

Technology of YMCA University of Science & Technology Faridabad, during the academic 

year 2016, is a bonafide record of my original work carried out under guidance and 

supervision of Dr. KOMAL KUMAR BHATIA, PROFESSOR, DEPARTMENT OF 

COMPUTER ENGINEERING and has not been presented elsewhere. 

 

 I further declare that the thesis does not contain any part of any work which has been 

submitted for the award of any degree either in this university or in any other university. 

 

 

 

 

 

 

(Vandana Dua ) 

Registration No. YMCAUST/Ph12/2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

CERTIFICATE 
 

 

This is to certify that this thesis entitled SEARCH SYSTEM FOR ONTOLOGY by 

VANDANA DUA, submitted in fulfillment of the requirement for the Degree of Doctor of 

Philosophy in COMPUTER ENGINEERING under Faculty of Engineering & Technology 

of YMCA University of Science & Technology Faridabad, during the academic year 2016, is 

a bonafide record of work carried out under my guidance and supervision. 

I further declare that to the best of my knowledge, the thesis does not contain any part of any 

work which has been submitted for the award of any degree either in this university or in any 

other university. 

 

 

 

(Signature of Supervisor) 

Dr. Komal Kumar Bhatia 

 PROFESSOR  

Department of Computer Engineering 

Faculty of Engineering and Technology  

YMCA University of Science & Technology, Faridabad. 

 

Dated: 



 iii

ACKNOWLEDGEMENT 

 

Foremost, I want to offer this endeavour to GOD for the strength, peace of my mind which 

the Almighty has bestowed upon me.  

 

I express my sincere gratitude to Honourable Guide Dr. Komal Kumar Bhatia for giving 

me the opportunity to in this area. It would have never become possible for me to take this 

thesis to this level without his innovative ideas and his relentless support and encouragement.  

It is worth to mention the encouragement and initiative sincerely rendered by Dr. A.K. 

Sharma.  My special thanks to Dr. Naresh Chauhan, Chairman, YMCAUST for his wishes 

and kind support.  I am thankful for the valuable suggestions provided by Dr. Nagpal, Dr. 

Manjeet, Dr. Jyoti and Dr. Neelam  It’s my pleasure to offer my thanks to staff at YMCA, 

all my friends, whose good wishes always remained with me in completing my work. 

 

I would like to thank my HOD, Prof. S.I Patil and Dean, Prof. Aditya Abhyankar for their 

constant encouragement, motivation and support for completing my PhD work. I take this 

opportunity to thank Dr. Vishal Naranje for the valuable discussions and moral support. I 

am especially thankful to Dr. Sujatha Raman, for all the suggestions, feedback and support 

in the compilation of thesis. I wish to thank Mr. Santosh Lolage for his constant motivation 

and support. I wish to offer my thanks to all the faculty members, staff members of 

Department of Technology, SavitriBai Phule Pune University.  

Words are not enough to express my gratitude to my dear kids Naina and Pulkit, my 

husband Chander Mohan Dhingra for their patience, compromises, and support. I am 

thankful to my mother-in-law Smt. Darshan Kumari, and father-in-law Sh. Hem Raj 

Dhingra for their constant support and love. My greatest gratitude goes to my father Sh. 

Amar Nath Dua who has remained with me at each and every step of my journey and 

mother Smt. Bimla Dua for her support and wishes which gave me the strength to complete 

the work. I would like to thank my sister-in-law and her husband Dr. Parveen Batra, Dr. 

Vinod Batra and my brothers and sisters-in-law Aman Dua, Kriti Dua, Nitin Dua and 

Alisha Dua for their love, encouragement and support for completing my PhD. 

(Vandana Dua) 

       Registration No.- YMCAUST/Ph12/2010 



 iv

ABSTRACT 

 

World Wide Web (WWW) is a huge repository of information and its success is due 

to its decentralized structure where anyone irrespective of its geographic location can 

publish its content. However, due to large amount of available information it is 

becoming difficult to access the relevant information. There has been a lot of 

paradigm shifts in the searching of information from WWW, which varies from 

directories to search engines. Web search techniques are mainly based upon a 

combination of textual keywords in association with ranking of the documents 

depending on the link structure of the web. Such keyword based search engines are 

the main tools for retrieval of information from WWW. However, the main limitation 

of keyword based approaches is that it produces irrelevant and imprecise results, 

making the search ineffective and time consuming, thus mandates an approach 

towards Semantic Web.  

Semantic Web allows the machine to interpret the concepts with underlying 

knowledge representation in structured languages such as RDF, OWL. The main 

technologies for the Semantic Web are ontologies, metadata and the semantic web 

language RDF, OWL, DAML+OIL. The current search engines cannot effectively 

utilize semantic web documents for web search as current search engines are not able 

to exploit the information representation provisions available in languages of semantic 

web. Therefore, the traditional techniques cannot be deployed for searching the 

documents represented in semantic web languages, hence there arises a need for 

modified crawling; indexing and ranking mechanism as the existing mechanism are 

inadequate for it.  

The present thesis work makes a contribution to the research effort of designing and 

developing of a framework for searching ontology annotated documents. Three 

ontologies have been developed in the domain of laptop using Protégé tool. The 

developed ontologies are associated with the web pages that best describes the 

concepts contained in particular ontology. Framework for crawling these ontology 

annotated web documents: SemCrawl, framework for indexing: SemIndex, 

framework for Ranking: SemRank has been proposed and implemented. The 



 v

developed framework SemEngine returns the web documents based on the concept 

coverage of the ontology depending on the query entered by the user. 

The ontologies were developed in Protégé tool successfully and have been validated 

for consistency with the set of queries using Description Logic. The developed system 

is efficient in terms of index creation as the index size created requires less space in 

comparison to index created for whole web page. The developed SemRank system for 

ranking ontology annotated web pages has been validated using Pearson Correlation 

coefficient which gives high collinear correlation. The system has been compared 

with the traditional mechanism of searching using the evaluation metrics that shows 

an improvement over the existing system. The developed system is capable of 

downloading the semantic web documents and effectively creates the index and ranks 

the web pages giving the results with good relevance.  

 

 



x 

 

LIST OF TABLES 
 

 

Table                    Title      Page No. 

 

Table 2.1  Building an Inverted Index-Step1, 2, 3                   15 

Table 2.2   Building an Inverted Index-Step5     16 

Table 2.3 Difference between Traditional Web and Semantic Web  19 

Table 2.4  Some Constructs of XOL language     28 

Table 2.5 Different tags of SHOE      30  

Table 2.6  Language Constructs of DAML     35 

Table 2.7  Comparison of different Ontology Languages    38 

Table 2.8 Comparative Analysis of ontology editing tools   45 

Table 2.9  Weights of Hyperlinks      50 

Table 2.10  Summarization of various Ontology Tools     63 

Table 3.1  Comparative analysis of Search Engines    67 

Table 3.2  Index of <Subject, Predicate, Object, Ontology>    73 

Table 3.3  Index of <HTML file, Ontology>     74 

Table 4.1 Domain and Range of Slots       89 

Table 4.2  Instances for University Ontology     89 

Table 4.3  Performance Rates for different Search Queries   91 

Table 4.4  Classes for Laptop_Review Ontology    92 

Table 4.5 Instances for Laptop_Review      93 

Table 4.6  Classes and SubClass of Laptop_Specification Ontology  94 

Table 4.7         Instances for Laptop_Specification Ontology   94 

Table 4.8 Classes and Subclasses of Laptop_Seller ontology   97 

Table 4.9  Set of queries to be executed in the domain of laptop  99 

 using three ontologies. 

Table 5.1  Series of Test conducted on Repositories for Crawler Module 111 

Table 6.1  Comparative analysis of indexing Techniques   117 

Table 6.2  HTML File and the associated Ontology    124 

Table 7.1 Comparative analysis of ontology ranking algorithms  128 

Table 7.2         Query concept for Laptop Cost      136 

Table 7.3         Concept_Weight_Measure for ontologies    136 

Table 7.4  Measure for Relatedness        137 



xi 

 

Table                    Title      Page No. 

 

Table 7.5  Measure for Match-Measure      137 

Table 7.6  Overall computed Rank_Score     137  

Table 7.7         Rank Score for Web pages      138 

Table 7.8         Ranked results for Query “laptop display”    138 

Table 7.9  Human Rank vs. Proposed Approach     138 

Table 8.1  Web Pages with the associated ontology    144 

Table 8.2  Set of evaluation query      147 

Table 8.3    Experimental Evaluation of the System    150 

Table 8.4    Comparative analysis of Search Engines    154 

 



xii 

 

LIST OF FIGURES 
 

 

Figure                                   Title      Page No. 

Figure 1.1  Depiction of flow of outline of the Thesis    7 

Figure 2.1   Architecture of Search Engine     11 

Figure 2.2  Basic Architecture of a Crawler     12 

Figure 2.3   Algorithm for Crawler      13 

Figure 2.4   Hub and Authority nodes      17 

Figure 2.5  Semantic Web Layered Architecture     21 

Figure 2.6  Example of XML describing a web page    22 

Figure 2.7  Example of Logic       23 

Figure 2.8  Languages Stack in Semantic Web     28 

Figure 2.9  An example of XOL Language       29 

Figure 2.10  Example of SHOE Ontology for CS Department   30 

Figure 2.11  Example of OML       32 

Figure 2.12       Dividing the RDF statement into <S, P, O>    33 

Figure 2.13  RDF Graph Representation of statement    33 

Figure 2.14       Example of OIL defining classes      34 

Figure 2.15       Example of DAML       36 

Figure 2.16  University ontology specified in OWL language   37 

Figure 2.17  Protégé Architecture       39 

Figure 2.18  GUI Interface for Protégé      40 

Figure 2.19  Architecture of WebODE      41 

Figure 2.20  Architecture of NeOn Toolkit     43 

Figure 2.21  Swoop Architecture       44 

Figure 2.22  SWRL Rules implemented in Protégé    46 

Figure 2.23  Example of Rule Language      48 

Figure 2.24  Hyper linking of RDF fragments     49 

Figure 2.25  Architecture of Swoogle      52 

Figure 2.26  Architecture of Falcon Search Engine    55 

Figure 2.27  Flow of Ontosearch       58 

Figure 2.28  SquishQL Query        59 

Figure 2.29  Example of SPARQL       61 



xiii 

 

Figure 2.30  Example of SQWRL       62 

Figure 3.1   Google result for query “Laptop Specification”   66 

Figure 3.2       Proposed Architecture for Search System for Ontology  70 

                       Annotated Web Documents 

Figure 3.3       Pseudo code for SemCrawl Module     72 

Figure 3.4       Parsing of results to <HTML, Ontology>    74 

Figure 3.5       Ontology and the web page associated with that ontology             74 

Figure 3.6       Algorithm for SemIndex Module     75 

Figure 3.7  Concept matching of Query      77 

Figure 3.8    Pseudo code for Search Module     78 

Figure 3.9       Three ontologies developed in Laptop domain   78 

Figure 3.10  Methodology of developed system     79 

Figure 3.11  Functional Diagram of the developed system    82 

Figure 4.1  Class Hierarchy for University Ontology    87 

Figure 4.2  Google result for Query “laptop price range 20000 to 300000” 90 

Figure 4.3  OntoVisualizer Result of Laptop_Review Ontology   92 

Figure 4.4  Laptop_Review Ontology Class     93 

Figure 4.5  Laptop_Specification Ontology     95 

Figure 4.6  Ontovisualizer result of Laptop_Specification Ontology  96 

Figure 4.7  Laptop_Seller Ontology      97 

Figure 4.8  Ontovisualizer result of Laptop_Seller Ontology   98 

Figure 4.9        Execution of Query for Laptop_Specification Ontology  100 

Figure 5.1 Architecture of Proposed SemCrawl     104 

Figure 5.2  Pseudo code for Fetch Module     105 

Figure 5.3        Pseudo code for Filter Module                                                          105 

Figure 5.4 Pseudo code for Link Extraction Module    106 

Figure 5.5  Structure of a URI Dispatcher Module    107 

Figure 5.6  Pseudo code for Parser Module     107 

Figure 5.7    <S, P, O>   Triples        108 

Figure 5.8        Methodology for development of SemCrawl Architecture  108 

Figure 5.9        Repositories of web pages   110 

Figure 5.10      Filtered web pages which are annotated with ontology   111 

Figure 5.11  Extraction of Subject, Predicate, Object from Ontology  112 

Figure 5.12 Console output of Extracted Subject, Predicate, Object   113 



xiv 

 

Figure 6.1  RDF/XML Code       114 

Figure 6.2  Triple representation of RDF/XML Document   115 

Figure 6.3  Graph Representation for RDF/XML document   116 

Figure 6.4  Architecture of SemIndex for indexing crawled Ontologies  119 

Figure 6.5  Pseudo code for Indexer Module     120 

Figure 6.6  Instances of Laptop_Seller Ontology     120 

Figure 6.7  Example of a Triple <Subject, Predicate, Object>   121 

Figure 6.8  Triple representation       121 

Figure 6.9  Algorithm for Ontology extractor     121 

Figure 6.10  Example <HTML File, Ontology> index    122 

Figure 6.11      Index of<Subject, Predicate, Object, Ontology>   122 

Figure 6.12  Index of < HTML File,Ontology>     123 

Figure 6.13  Parsing of results to <S, P, O>     123 

Figure 6.14  Ontology Extractor Output      124 

Figure 6.15    Ontology index of <Subject, Object, Predicate, Ontology>  125 

Figure 6.16    Index of < HTML file, Ontology, > in database   125 

Figure 6.17     Graph of HTML web contents without Ontology vs using 

SemIndex126 

Figure 7.1        Proposed Framework for Ranking Ontology Annotated Web Pages 131 

Figure 7.2        Algorithm for Match-Logic (O) of Ontology    133 

Figure 7.3  Algorithm for Annotated Web Page Extractor   134 

Figure 7.4  Algorithm for Rank Logic Module     135 

Figure 7.5  Human approach vs. proposed approach    139 

Figure 8.1  Development of Laptop_Specification Ontology    143 

Figure 8.2  Crawler Module Result      145 

Figure 8.3        Ontology Parsing Result      146 

Figure 8.4        Ontology Index       146 

Figure 8.5  Execution of Query in Protégé          147 

Figure 8.6  SemEngine Result Output      148 

Figure 8.7   SemEngine result for query “laptop seller sites”   149 

Figure 8.8  SemEngine Precision Curve vs Google    151 

Figure 8.9       SemEngine Curve of Ideal vs Actual Recall    151 

Figure 8.10 SemEngine F-Measure Ideal vs Actual Curve    152 

Figure 8.11 Precision Graph for the increased number of queries   153 



xv 

 

Figure 8.12  Recall Graph for the increased number of queries   153 

Figure 8.13  F-measure graph for the increased number of queries  154 



xvi 

 

LIST OF ABBREVIATIONS 

 

 

 

DL   Description Logic 

DAML   Darpa Agent Markup Language 

FOAF   Friend-of-a-friend 

HITS    Hypertext Induced Topic Search 

HTML   Hypertext markup Language 

HTTP   Hypertext transfer Protocol 

RDF    Resource Description Framework 

RDFS   Resource Description Framework Schema 

OIL   Ontology Interface Layer  

OML   Ontology Markup Language 

OWL   Web Ontology Language 

RuleML  Rule Markup language  

SPARQL  SPARQL Protocol and RDF Query language 

<S,P,O>  <Subject, Predicate, Object> 

SHOE   Simple HTML Ontology Extension 

SWO   Semantic Web Ontology 

SWDB   Semantic Web Databases 

SWRL   Semantic web rule Language 

SquishQL  SQL like Query language 

TF-IDF  Term Frequency-Inverse Document Frequency 

W3C   World Wide Consortium 

XML   Extensible Markup Language 

XOL   An XML-Based Ontology Exchange Language 

URI    Uniform Resource Identifier 

URL   Uniform Resource Locator  

UI   User Interface  

 

 

 



 

 173

 

BRIEF PROFILE OF THE RESEARCH SCHOLAR 

 

 

Name:  Ms. Vandana Dhingra 

Designation:   Assistant Professor, Department of Technology,  

SavitriBai Phule Pune University, Pune 

Qualification: Ph.D (2010- to current) 

M.Tech (2006), First Class with Distinction 

B.E (1998), First Class with Distinction 

Research Interests: Semantic Web, Information Retrieval, Ontology, Web Mining. 

Work experience:  

• Assistant Professor, Department of Technology, S P Pune University, Pune 

(2013-to current) 

• Assistant Professor, Apeejay Stya University, Gurgaon (2010-2013) 

• Assistant Professor & HOD, Apeejay College of Engineering, Gurgaon 

(2004-2010) 

• Lecturer, CITM College of Engineering, Faridabad (2002-2004) 

• Lecturer, Vaish College of Engineering, Rohtak (1999-2001) 

 

 

 

 

 

 

 



 1 

CHAPTER I 

 

1. INTRODUCTION 

 

1.1. GENERAL 

World Wide Web (WWW) [1] is a huge source of interlinked documents that forms a 

very useful information source. The success of WWW is largely due to its 

decentralized design structure [2] where the information is hosted by several servers, 

and a document can point to other documents irrespective of its geographic location. 

An information retrieval [3, 4] is a technique for searching the information about a 

subject over enormous number of resources relevant to the user’s information need. 

Information retrieval can be precisely defined as: 

“Information Retrieval (IR) is finding material (usually documents) of an unstructured 

nature (usually text) that satisfies an information need from within large collections 

(usually stored on computers)” [4]. 

WWW has revolutionized the means of data availability. But due to its current 

structure [5] it’s getting difficult to access the relevant information from such a large 

collection. The Web size has grown to a large extent and due to large volume of 

available information; it is becoming difficult to locate useful information [2, 6]. 

Retrieving the relevant information from WWW is an unprecedentedly a difficult 

task. 

With such a large collection of information, search engines [7] are emerging as an 

important tool for searching the relevant information. The information is searched 

through search engine by submitting queries that are in the form of keywords and as a 

result information seekers find the required information. Thus, search engines are 

considered as an important tool for information retrieval system that returns a set of 

ranked web pages according to their relevance and matches the query keywords. 

 

 



 2 

1.2 SEARCH ENGINES 

Search Engine is a tool that is used to retrieve the information stored over the WWW. 

Typically Search Engine has the following main components:  

1.2.1 Crawling 

 

It is the first stage of search engine in which the documents from the web are 

downloaded based on the URL received from the URL Frontier Queue [8]. The web 

pages fetched from the web are sent for parsing, for further extraction of links. The 

extracted links are sent to URL Frontier Queuefor fetching of web pages from those 

links after passing through a series of test of duplicate contents and URL elimination.   

 

1.2.2 Indexing 

 

The crawled web pages are then indexed by the Indexer Module. The major steps 

involved in index construction are -Tokenization, linguistic pre-processing process 

such as hyphenation, stop word removal, stemming, lemmatization, normalization [4]. 

These terms are sorted and maintained as posting list consisting of the frequency of 

the terms and the document that each term occurs in.Different type of indexes are 

constructed depending upon the type of contents; Text Index, Structure Index,Utility 

Index [7].  

 

1.2.3 Searching 

 

Query terms entered by the user are compared with the index, producing the results. 

When a user query is entered, the terms of query are matched with the terms in the 

index structure and the terms matching the query terms are returned as a result to the 

user. 

 

1.2.4 Ranking 

 

The web pages returned after matching with query are ranked based on various 

factors. The most widely used ranking algorithms are Page-Rank and Hyper-text 

Induced Topic Specific (HITS) algorithm. 



 3 

The search engines, for example Google, Yahoo etc. match the keywords in the query 

with the web pages that are having those keywords, resulting into result page set 

which has relevant and irrelevant results. Retrieving the relevant information from the 

information available is an important research issue in search engines.  

1.3 LIMITATIONS OF THE TRADITIONAL SEARCH ENGINES 

Major search engines such as Google, Yahoo works on keyword based matching [9]. 

It is the user’s work to extract out the relevant information from a large set of results. 

Finding out the relevant information from such a large set of web pages proves out to 

be very tedious task. Search engines based on keyword matching have certain 

problems associated with them [10, 11, 12, 13, 14] as listed below: 

1. High recall, low precision 

The main issue with the returned results are that they have high recall but low 

precision which means that it returns a lot of important results from its repository but 

those results are not that relevant which refers to low precision. But with lot of results 

retrieved is that even if the main relevant pages are retrieved, they are of little use if 

large numbers of mildly relevant or irrelevant documents are also retrieved.  

2. Low or no Recall 

Often it happens that users don’t get any relevant answer for request, or important and 

relevant pages are not retrieved.  

3.  Lack of machine Understandability 

The machine has the inability to understand the provided information due to lack of 

universal format [15]. The information is based on HTML based free format web 

pages which are very suitable for direct human use but is not appropriate for the 

automated information exchange, retrieval and processing by software 

agents(machines). The current web contents are mostly represented in HTML which 

is more presentation language and henceforth, does not help in machine 

interpretability. 

 

 

 



 4 

4. Poor Content Aggregation 

For the query entered the results are lot of documents or web pages; a user has to 

manually aggregate the partial information to get the complete information. Hence, 

search engines returns a lot of results which has to be manually aggregated.  

5. No Semantics 

Results are based on just matching of the keyword in that document. There is no 

concept based matching of the query with the documents. Therefore, the results may 

or may not be relevant in context of semantic to the user query. 

6. Difficulty in handling queries with disambiguous terms. 

The current search engines matches the query keywords with the keywords present in 

the document. For example query “jaguar” has two different meaning car as well as 

animal and hence, produces results for both the documents, leading to low precision. 

Similarly, the query “holiday “and “vacation” relates to the same term but when 

entered separately produces different set of results although referring to same word.  

The limitations specified above mentions that just matching keywords do not help in 

searching; it produces a lot of imprecise results. The efficient searching requires the 

machine to understand the semantics of the information. This machine 

understandability concept can help WWW to make a move from syntactic web [16] to 

Semantic Web [16, 17].  

1.4 MOTIVATION OF THE RESEARCH 

Web search is a key technology of the Web, since it is the primary way to access 

content over the WWW. Current web search is essentially based on a combination of 

textual keyword search with an important ranking of the documents depending on the 

link structure of the web [18]. The current web is based on HTML, [19] which 

specifies how to layout a web page for human readers. HTML as such cannot be 

exploited by information retrieval techniques to improve results, which has thus to 

rely on the words that forms the content of the page; hence it is restricted to keywords 

[20]. But as discussed above the limitations of keyword based search leads to 

movement towards Semantic Web. In Semantic Web, the knowledge is represented 



 5 

with ontologies which can be specified in highly structured languages such as RDF, 

OWL [21]. These representation languages have high expressive constructs.  

There has been a lot of research in the area of Semantic Web. For example, Swoogle 

[22] search system provides a search for Semantic Web documents and terms. The 

output system of the Swoogle represents a set of ontologies represented in Semantic 

Web languages [23]. These ontologies can be used to annotate web pages, which 

results in concept based searching of the web pages. 

With the advancement in the area of Semantic Web, the main work focuses on the 

knowledge representation of these web pages. But only a few research efforts have 

been found where these ontologies can be used to represent web pages for information 

retrieval. Therefore there is a requirement to use the web page which are represented 

with knowledge based approaches and a system need to be developed to crawl, index, 

rank and search those web pages. . 

1.5 OBJECTIVES OF THE PROPOSED WORK 

The overall goal of the proposed work is to develop a search system for concept based 

searching. The specific objectives of the present work are as follows: 

1. To develop ontology in a particular domain. 

 

Ontology need to be developed using development framework which covers domain 

knowledge.  

 

2. To develop a crawler system to crawl these ontologies and annotated web 

pages. 

 

A crawling mechanism need to be developed for crawling the web pages which are       

annotated with ontology, traditional crawlers cannot be reused for this as semantics 

are associated with the web pages under research which cannot be crawled by 

traditional crawling system. 

 

 

 

 

 

 



 6 

3. To develop an Indexer system to index the web pages and the corresponding 

ontology. 

 

An indexing mechanism need to be developed for indexing web pages annotated with 

ontology. Different indexing mechanism is required to be deployed as web pages are 

represented with semantics which are parsed as subject, predicate, object. 

 

4. To develop a ranking system to present ranked retrieval system.  

 

A ranking system need to be developed to rank the ontologies and the associated web  

pages. This ranking mechanism needs two different approaches first to tank 

ontologies and then to rank web pages. 

 

5. To develop a search system to searching these ontology annotated web pages. 

 

A search system needs to be developed for the proposed algorithms which will search 

the web pages based on the concepts of the query. 

 

To achieve these objectives domain specific approach need to be followed to develop 

ontology in a particular domain. A concept based crawling, indexing and ranking 

system need to be developed to crawl these ontologies and annotated web pages. In 

order to assure the practical implications of the objectives undertaken, the system 

should support scalability, extensibility, robustness and improvement over the 

evaluation metrics. A search system need to be developed which can search the web 

pages based on the concepts associated with the pages and should have high 

performance. 

 

1.6 ORGANIZATION OF THESIS 

The present thesis is organized in nine chapters and is as shown in Figure 1.1 

 



 7 

 

                        Figure 1.1 Depiction of flow of outline of the Thesis 

The content of each chapter for thesis is summarized as under:  

• Chapter II reviews the published work related to search engines and Semantic 

Web. The chapter discusses the search engines, limitations of the current search 

engines and need for semantic Web. Research work carried out in the area of 

Semantic Web, ontologies has also been discussed in detail. 

• Chapter III presents a comparative analysis of various search engines and 

proposes the architecture of novel search engine. The phases of development of 

proposed SemEngine have been discussed in detail. The methodology formulated 

for the research has been discussed. The implementation of the proposed 

SemEngine architecture has been discussed in this chapter with the results.  



 8 

• Chapter IV discusses the ontology development in a particular domain. The 

problem has been discussed and the related ontologies have been developed in 

Protégé. 

• Chapter V proposes the architecture for crawling semantic annotated web 

pages. The architecture of proposed SemCrawl has the feature of extracting 

semantically annotated web pages. This chapter describes the detailed 

architecture of SemCrawl and all its components. 

• Chapter VI proposes the architecture for indexing semantic annotated web 

pages. The architecture of proposed SemIndex creates an index for an 

ontology which is related to a web page and conceptual index of ontology. 

This chapter discusses the architecture of the proposed SemIndex and its 

component in detail. 

• Chapter VII proposes the architecture for ranking semantic annotated web 

pages retrieved as a result of user query. The proposed architecture SemRank 

ranks the web pages in the order of their relevancy based on various factors. 

• Chapter VIII discusses the implementation details of the modules created and 

the results of SemEngine architecture. 

• Chapter IX presents the contributions of the present research and suggestions 

for future research. 

  

 

 

 

 

 



 9 

     Chapter II 
 

 

 

2. SEARCH ENGINES AND SEMANTIC WEB: REVIEW  
 

 

2.1 INTRODUCTION 

 

This chapter presents the literature survey covered in nine sections. First section 

introduces the World Wide Web, the architecture of search engine which is used for 

retrieval of information from the web, the problem with the current information 

retrieval model and differences between the traditional web and the Semantic Web. 

Second section details about the layered Semantic Web architecture. Third section 

discusses about the technologies for Semantic Web. Forth section provides the details 

of ontology, like different definitions given for ontology, reasons for developing 

ontology, ontology languages. Fifth section presents about the different ontology 

development tools. Sixth section of this chapter discusses about the different ontology 

rule languages. Seventh section enlists various semantic search engines and their 

architecture. Eighth section discusses about the Semantic Web query languages and 

ninth section narrates about the summary of various ontology tools. 

 
2.1.1 Evolution of World Wide Web  

Internet [24] is collection of large number of interconnected computers distributed 

across different geographical location over the world. The evolution of the internet 

started with the Advanced Research project Agency (ARPA) [25] project started by 

the US Department of Defence for military purpose called as ARPANET in 1960s to 

transmit the data using circuit switching. In 1969, ARPAnet was linked as a research 

project with four universities -University of California Los Angles (UCLA), 

University of California-Sant Barbara, Stanford University and University of Utah. 

With these universities, ARPAnet project developed packet switching concept which 

is used to send message from one remote location to another.  

 

In 1972, when ARPANET was made publically available, electronic mail [26] was 

proposed by Ray Tomlinson and in 1973; TCP/IP Protocol [24] was introduced after 



 10 

which Internet began to work formally. Internet is a system of interconnected 

computers networked through standardized communication protocols. With the 

advent of Internet more and more functionalities were added i.e. Telnet, DNS, 

Gopher. 

 

Tim-Berner Lee in 1989 introduced the World Wide Web (WWW) [1] by proposing 

the linking of documents over the internet using hyperlinks. There is a difference 

between both terms although they appear to be same. Internet is a networking 

infrastructure which connects a million of computers globally whereas WWW is one 

of the services running on Internet which defines a way of accessing information over 

internet.  As a part of research project, languages and protocols for World Wide Web 

was developed and standardized that includes the emergence of language HTML [27] 

for representing web documents, URLs for identifying a web page.     

 

2.1.2 Information Retrieval from Web: Search Engine Architecture 

The amount of information available over the WWW is growing rapidly and in very 

hysterical manner as every user is allowed to read and publish his/her contents  in one 

or another form by using emerging technologies like blogs[28], wikis[28]. This read-

write web model has made the size of the web grow with a great extent. Finding 

information from such a large information collection is unprecedentedly a very tough 

task. Search engines [30] are the tools developed for finding information from 

unstructured collection of information.  Various Search engines were developed to 

access the information like Excite in 1993[31], Yahoo in 1994[32], Lycos in 

1994[33], Alta Vista in 1995[34], Google in Stanford university by Sergey Brin and 

Larry page in 1997[30, 35] and MSN in 1999[34].   

 

A general purpose Web Search Engine receives the query in the form of natural 

language from the user on user interface, processes the query, retrieves relevant 

documents from the index and ranks them according to their importance before 

supplying them to the user [38]. The main functional components of a search engine 

are shown in Figure 2.1. 

 

 

 

 

 



 11 

 

 

Figure 2.1 Architecture of Search Engine 

 

The architecture of a Search Engine consists of following main components: 

 

1. Crawler Module 
 

A crawler traverses the WWW and retrieves web pages from it. The retrieved we 

pages are then stored in repositories for further indexing and are analyzed for 

hyperlinks contained in those pages which points to other web pages. Thosbe 

hyperlinks are stored in a queue and web pages are fetched from the WWW an                                                                         

d are finally stored in Page Repository which forms a collection of web pages 

downloaded from the web. The web crawlers are also called as “spiders”[9,36,37], 

“wanderers” [37]. The basic architecture of a crawler [4] is depicted in Figure 2.2  

 

 

 

 

 

 

 

 

 

Figure 2.1 Architecture of Search Engine 

 

The architecture of a Search Engine consists of following main components: 

 

1.     Crawler Module 

 

A crawler traverses the WWW and retrieves web pages from it. The retrieved web 

pages are then stored in Page Repository for further indexing and are analyzed for 

hyperlinks contained in those pages which points to other web pages. Those 

hyperlinks are stored in a queue and web pages are fetched from the WWW and are 

finally stored in Page Repository which forms a collection of web pages downloaded 

from the web. The web crawlers are also called as “spiders” [9, 36, 37], “wanderers” 

[37]. The basic architecture of a crawler [4] is depicted in Figure 2.2  

 

                           
 

 

 

 
                                           

  

  

  

  

     
                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ranking 

Module 

World Wide 

Web 

Crawler Module 

Page Repository 

Indexer Module 

                                                                          

Text 

Index 

Structure 

Index 

Special-

Purpose 

Indexes 

Query 

Module 

User Interface 

 URL Web pages  

Web 

pages 

query 

Index database  

query 

results 

results 
keywords 

index 



 12 

 

Figure 2.2 Basic Architecture of a Crawler 

 

 

The basic steps for crawler module as described in Figure 2.2 are as: 

 

STEP 1.  Fetch module fetches a seed URLs from set of URLs stored in the URL   

Frontier and downloads the particular web page corresponding to that 

URL, generally using HTTP protocol. DNS Resolver module determines 

the IP address of web server host name of newly discovered URLs.  

STEP 2.    Fetched page is parsed and links and contents are extracted from that page. 

    The extracted text and links pass through a series of test.  

STEP 3.   First test is done to check if a web page with the same content has already 

been sent to another URL by using Fingerprints (FPs) techniques with the 

checksum stored in Doc FPs and the duplicate contents not considered, and 

rest are sent to Indexer Module for indexing. 

STEP 4.    Second test, URL Filter is used to check whether extracted URL should be 

excluded from URL Frontier based on various tests. For example based on 

robot exclusion protocol that specifies certain URLs not to be crawled 

those URLs are filtered.  

STEP 5.   Third test is done to check for duplicate elimination of URLs. 



 13 

STEP 6.    After passing through a series of test, those URLs are sent to URL Frontier 

for further fetching of web pages from the web. 

 

The crawler module will recursively add newer URLs to the URLs frontier and keep 

on fetching web pages from World Wide Web for further indexing of the documents.    

 

The basic algorithm for crawler module is as described in Figure 2.3[39] 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Algorithm for Crawler 

 

Many hosts place certain access policy to crawl their contents under standard 

Robot exclusion Protocol which is defined as robot.txt file which mentions the list 

of pages or URLs or directories that should not be accessed from that site. Every 

crawler must adhere to the access policies mentioned in the Robot.txt file. 

 

 

 

Crawler ( ) 

{ 

While not empty (list of URLs) 

1. read a URL from the set of seed URLs; 

2. determine the IP address for the host name; 

3. if robot.txt file exist on system file and  includes .disallow 

statement then break; 

4. determine protocol of underlying host; based on the 

protocol download the document; 

5. identify for the format of file; 

6. check whether document has been already downloaded or 

not 

7. if not 

a. read the document and extract the links from that 

document else continue; 

8. convert URLs links into their absolute URL equivalents; 

9. add URLs to set of seed URLs; 

} 



 14 

Example of Robot.txt File  

 

User-agent:* 

Disallow: /ymcaust/circulars/ 

Disallow: /ymcaust/moodle/ 

 

These lines of code indicate that no robots or crawler should visit any URL 

starting from /ymcaust/circulars/ and /ymcaust/moodle. Thus the crawler is able to 

download only those web pages that are allowed to be downloaded by the 

robot.txt. 

 

2. Indexer Module  
 

The contents of the crawler module are given as input to the indexer module to 

create various types of indexes. The different types of indexes maintained by the 

search engines are as follows: 

 

1. Text index [30, 38, 40] contains the indexes created for the text which has an 

index for the tokens encountered in a web page to the document containing the 

token. 

2.  Structure index [38] contains the link structure of the web page.  

3. Utility indexes [38] are created for the images and pdf files. 

 

The indexing module helps in creating the indexes for the web documents in an 

offline mode which helps the fast retrieval of the query entered, as the keyword 

will be looked upon in the index data structure for fast searching. Inverted index is 

the most widely and generally used index for search engine. The basic steps for 

index construction is described below with an simple example- 

  

An Inverted Index [4] is organized by index terms. The terms are identified from 

the document after initial step of pre-processing of documents which are stop 

word removal [4, 41], stemming word [4, 41], normalization [4, 41]. For each 

term identified, the index contains a list of documents which has that term. The 

different steps for index construction are - 

 

 

 

 



 15 

Step 1: All the tokens (terms) are identified from the document and the document 

that contain those terms. 

Step 2: The words that are common words and appear to have little value in 

selecting documents are removed from the vocabulary. For example is, 

are, the, a, such words are called stop words. 

Step 3: Token normalization is done for the tokens that appear to be same by 

creating equivalence classes for example removing hyphens. 

Step 4: Stemming and lemmatization is done to reduce inflectional and 

derivational forms of words to a common base form. 

Step 5: The terms are sorted alphabetically with frequency of the term in 

document called as dictionary and has pointer to the list of documents 

they are contained in called as posing list. 

 

Consider an example of two documents for building inverted index using the above 

described steps 

Doc1: laptop sale is increasing  

Doc2: all varieties of dell laptop are available for sale 

  
Table 2.1   Building an Inverted Index-Step1, 2, 3 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 shows the tokens identified after Step1, 2, 3. In Step 2 stop word removal is 

done where is, all, of, are, for are removed. In step 3 normalization is done. In Step 4 

stemming and lemmatization is done, for the current example increasing is reduced to 

increase, varieties reduced to variety.  The inverted index constructed after step 5 is 

shown in Table 2.2. 

Term Doc ID 

Laptop 1,2 

Sale 1,2 

Increasing 1 

varieties 2 

Dell 2 

available 2 



 16 

 

Table 2.2 Building an Inverted Index-Step5 

 

 

 

 

 

 

 

 

 

 

 

The above example describes the steps for Index construction. The index construction 

involves identifying the terms encountered in both documents. The document that 

contains those terms are mentioned as posting lists and the frequency of those terms in 

the collection are called as term-frequency. When given a search query the term is 

looked in the index and all the documents that are contained in the index are given as 

result.  

 

3.  Query Module 
 

This component process the user query by converting the user entered query into a set 

of keyword. This module uses the index to find the pages that contains those 

keywords specified in the query which are then given as input to the ranking module. 

 

4. Ranking Module 
 

This is an important component in any information retrieval system as this component 

returns the ranked set of result pages according to the relevance of the query. This 

enables the user to access the required information without navigating through the 

hundreds of pages given as result set. 

 

Different algorithms for ranking the web pages are as follows: 

 

 

 

 

 

Term Frequency 

Available 1 

Dell 1 

Increasing 1 

Laptop 2 

Sale 2 

Varieties 1 

Document 

(Posting List) 

2 

2 

1 

1,2 

1,2 

2 



 17 

1. Page-Rank Algorithm[30] 

 
The Page Rank algorithm also known as random-surfer model was proposed by 

Sergey Brin and Larry Page. Page rank is based on linked structure of the web and, in 

this approach, a web page score is ranked high if it pointed by other high rank web 

pages. Page rank [42]   is defined as in equation 2.1.  

 

))(/)(......)(/)(()1()( 11 nn TCTPRTcTPRddAPR +++−=           (2.1) 

 

Where PR (A) = page Rank of A 

PR (Ti) =Page ranks of pages Ti which links to page A 

C (Ti) = number of outgoing links from page Ti 

D=damping factor 

 

The damping factor is set to 0.85. The page rank calculation is an iterative 

computation and it is calculated as a sum of page ranks of all inbound link pages 

linking to it dividing by the number of outbound links in each of those pages. 

 

2. HITS (Hypertext Induced Topic Search) [43,44] 

 
This algorithm was introduced by Jon Kleinberg. There are two types of pages- 

 

(i). Authority page- A web page is considered as authority if it has many 

important pages linking to it. 

(ii). Hub page- A web page is considered as hub if it contain link to many 

important pages. 

 

 

 

     Hub  

 

 

 

  Authority 

 

 

Figure 2.4 Hub and Authority nodes 

 

Figure 2.4 shows the hub node, which is linked to many important nodes and 

authority referring to node which has many important web pages linked to it. The hub 

and authority score are updated for each iteration. The previous iteration of hub score 



 18 

is used to update authority score and current iteration of authority score is used to 

calculate the current hub score. The parameters for authority and score are given in 

equation 2.2 and equation 2.3  

 

                                                ∑ ∈= Epq
q

y
p

x ),(                                                (2.2) 

                                                 ∑
∈

=
Eqp

qp xy
,

                                                             (2.3) 

 

Where authority score of a page p is x 
p
 and hub score is y 

p
. 

 

2.1.3 Problem with Current Web Information Retrieval Model 

 
Traditional Web search engines provides the results by keyword based matching i.e. 

when a user fires a query, the query terms are searched in the index and the results are 

returned to the user. Due to this the web search engines sometimes provides the 

ambiguous results. For example   

 

(i).   The search for term “jaguar” results in the web pages related to vehicle 

jaguar as well as animal.   

(ii).   The search for the term “python” produces more results related to animal   

python whereas user may be interested in python programming 

(iii). The search for the term “car” does not include the web pages which has     

automobile mentioned in it. 

 

Matching the keywords results in ambiguous results due to the following identified 

reasons: 

(i). This is the problem because the underlying language used for    

representation of web contents in traditional model is HTML which is 

just a presentation language and does not have any significance of the 

tags associated with it, which are just used as presentation tags. 

 

(ii).   The problem with the current WWW is that the contents available on the        

web are not machine-processable.  

 

To process the contents of web, natural language understanding (NLP) technique 

which processes the contents of the web for finding semantics happens to be a very 

difficult technique. 



 19 

 

Therefore, there arises the need for the web which has a meaningful contents 

associated to it that can be machine-processed. Tim-Berner Lee introduced the 

Semantic Web [45] as a technology that makes the web more intelligent by making it 

machine-processable. 

 

2.1.4 Introduction to Semantic Web  
 

“The Semantic Web is an extension of the current web in which information is given 

well defined meaning, better enabling computers and people to work in cooperation 

[46]”. 

  

This vision of the Semantic Web was proposed by Tim-Berner Lee, stating that 

contents on the web will be more structured letting the machine to understand the 

semantics of the contents. This will make the machine to understand, interpret and 

present more precise results, making the machine more intelligent. The Semantic Web 

enables intelligent services for machine processable web such as information brokers, 

search agents and information filters which offers greater functionality and 

interoperability than current standalone services [47]. 

 

2.1.5 Difference between Traditional Web and Semantic Web [48] 
 

The difference between both the web based on various parameters has been discussed 

in Table 2.3. 

  Table 2.3 Difference between Traditional Web and Semantic Web 

Parameter Traditional Web Semantic Web 

Language 

Representation 

 

The languages used for 

representing the contents of 

traditional web are HTML, 

XML. 

The languages used for 

representing the contents of 

Semantic Web are RDF, 

OWL, DAML+OIL. 

Language 

Expressiveness 

The underlying language has no 

expressive power; it is just used 

as a presentation language on the 

web. 

The underlying language for 

Semantic Web has expressive 

constructs where concepts are 

represented as classes and has 

relationship between them.  

Hyperlinking The hyperlinking structure of 

traditional web is defined with 

 < link href= “              “>which 

does not have necessarily a 

relevant linking. 

The hyperlinking structure of 

Semantic Web is defined with 

constructs such as 

<rdf:seeAlso>,<owl:Imports>. 



 20 

 

 

 

 

 

 

 

 

 

 

 

The above Table 2.3 depicts the difference between the Traditional Web and the 

Semantic Web based on various parameters.  

 

Semantic Web is the next generation web in which the information is represented with 

well-structured languages like RDF, OWL, supporting the concepts to be linked to 

other concepts allowing the machine to understand the underlying semantics of the 

represented information. 

 

The next section discusses about the layered architecture of Semantic Web in detail. 

 

2.2. SEMANTIC WEB ARCHITECTURE 
 

World Wide Web Consortium (W3C) organization is leader in developing standards 

and technologies for Semantic Web. Tim-Berner Lee, Director of W3C proposed 

layered architecture of Semantic Web as shown in Figure 2.5. In the Semantic Web, 

layered architecture each layer follows the below mentioned principles- 

 

1. Each layer in the architecture can use the technologies or support of the layers 

below it. 

2. The upper layer is compatible with layers below it. For example, the semantics 

of the OWL should be fully compatible with the RDF. 

3. The level of semantics increases from the lower layers as compared to the 

upper layers. For example OWL has more expressive semantics than RDF. 

 

 

Concept Traditional web is based on 

keyword-based matching of the 

query with a document. 

Semantic Web has a concept-

Based matching of the query 

with a document. 

Machine 

Accessible  

Traditional Web does not 

support machine accessibility of 

contents,         

Semantic Web supports 

machine accessibility of 

contents.    

Rule 

Languages 

 Traditional Web do not support 

any rule language for accessing 

the contents. 

Semantic Web contents can be 

accessed via various rule 

languages. For example 

SWRL. 

Ranking Traditional Web supports Page 

Rank algorithm. 

Page Rank algorithm as such 

cannot be implemented for 

Semantic Web because of the 

underlying knowledge 

representation. 



 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Semantic Web Layered Architecture 

 

The foundation layer of architecture consists of Unicode and URIs which identifies 

the resources. Above this layer, three layers represent language representation for the 

specifying Semantic Web documents. These three layers from bottom to top, has 

more expressiveness and inferential capability constructs in comparison to the layer 

below it. The layers above the language layers is Logic Layer which is responsible for 

adding logic to the system which is the most promising capability of this Semantic 

Web which differentiates it from other systems. Proof layer is responsible for 

justification for the results produced. Trust is applicable through various technologies 

like digital signatures [49]. 

 

The detailed descriptions of the following components are described as following:  
 

 

1. Unicode and URIs 
 

This layer is used to identify objects by unique identifiers in the Semantic Web and to 

ensure that the technologies are applicable to all languages. URI (Uniform Resource 

Identifier) is the standard used for identifying and locating resources on the web. 

 

 

 

 

Unicode   URI 

XML and XML Schema 

RDF and RDF Schema 

OWL 

Logic 

Proof 

Trust 



 22 

 

2. XML [50] 
 

XML is a popular language for exchanging information which conforms to a well-

defined syntax. In XML language user can define its own tags for the structuring of 

the document. XML is well differentiated from HTML language as  

(i). XML does not have fixed well defined tags as HTML. In XML user 

can define their own tags 

(ii). HTML is a language primarily used for data presentation and 

formatting, whereas the goal of XML is to well describe the data 

content. 

A XML document consists of text mark-up with user-defined tags for representation. 

Consider an example of XML document 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2.6 Example of XML describing a web page 

 
Figure 2.6 specifies an XML code in which the first statement describes the version 

and encoding scheme of the document called as prolog of the XML document. This 

document starts with user defined tag and has elements name, director, address, 

academiccourses, researchareas, contactno associated with it.  

 

3. RDF (Resource Description Framework) [51] 
 

RDF is a framework for processing metadata so that it can be exchanged between 

applications without loss of meaning. It is a method for representing information 

about resources on the web [52]. The goal of RDF is to enable applications to 

exchange data on the web while still preserving their original meaning as opposed to 

<?xml version= “1.0” encoding= “UTF-8”?> 

<website description> 

<name> “University of Technology” </name> 

<director>Dr. Prinayar</ director> 

<address> Delhi</address > 

<academiccourses>Mtech, Phd</academiccourses> 

<researchareas> Aeronautics, mechanical</researchareas> 

<contactno>011-23456 </contactno> 

</website description> 



 23 

HTML and XML. The main intention is not only to display documents correctly but 

also to allow for further processing and recombination of information contained in 

them. [53]. 

 

4. RDF Schema [54] 
 

RDF schema can be viewed as a primitive language for organizing web objects into 

hierarchies. Key primitives are classes and properties, subclass and subproperty 

relationships and domain and range restrictions. RDF Schema is based on RDF [10]. 

 

5. Logic and Proof Layer [55] 

 
Logic layer is responsible for providing logical reasoning. In this layer, logic is added 

to the semantic contents. Logic adds the reasoning capability to the underlying 

language, which is considered as the most powerful capability for any system. Adding 

the logic to the contents helps the software agents to process the information. With the 

added facts and rules, new facts can be derived from the existing knowledge. 

Consider a knowledgebase 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Example of Logic 

 

Figure 2.7 specifies an example of logic which specifies the Facts and Rule and the 

Facts derived from the given knowledge. Logic added to the knowledge base makes 

the language more expressive and makes machine-processable. 

 

The Proof Layer involves the actual deductive process as well as representation of 

proofs in web languages (from lower levels) and proof validation [49]. 

 

 

 

 

Facts 
1. John is father of Mary 

2. Mita is mother of Mary 

Rule 
1. father(x, y)^mother(z,y)->husbandOf(x,z) 

2. mother(x)->female(x) 

With the knowledge base and the rules defined it can be 

derived 
1. John is husbandOf Mita 

2. Mita is Female 



 24 

6. Trust layer 
 

This is the topmost layer which is responsible for providing trust on data, contents, 

applications deployed in the lower layers. Trust layer emerge through the use of 

digital signature and other kinds of knowledge based on recommendation by trusted 

agents on rating and certification agencies and consumer bodies [49, 56]. 

 

The next section discusses about the technologies of Semantic Web in detail. 

 

2.3 TECHNOLOGIES FOR SEMANTIC WEB 
 

The technologies and tools that are recommended by W3C to make the Semantic Web 

a reality are metadata, ontology development tools and ontology languages. The 

details of these technologies are as follows: 

 

2.3.1 Metadata [49, 57] 
 

Tim Berners-Lee's vision for WWW is termed the "Semantic Web," where semantic 

metadata are the building blocks. By annotating or enhancing documents with 

semantic metadata, software programs (agents) can automatically understand the full 

context and meaning of each document and can make correct decisions about the 

exact user of documents and the way in which these documents should be used. 

 

Metadata generation tools generate metadata from web resources and store it in RDF 

for later use. There are various metadata tools to create metadata for already existing 

web pages.  Such tools for creating metadata are 

 

1. Reggie [58, 59] 

It is a tool capable of extracting metadata from given web pages. The user can select 

any existing schema file or can create his/her own schema files. Reggie extracts the 

META tags from a given URL and attempts to add them to the most appropriate fields 

of the chosen schema. It also allows users to create their own metadata schema files. 

 

2. DC-DOT [58, 60]  

It is another tool for metadata extraction. In comparison to Reggie where the user 

provides the schema file, DC-DOT specifically uses the Dublin Core schema, a 

metadata element set for description of electronic resources, to extract metadata from 



 25 

a given web resource. DC-DOT uses the information contained in the META tags of a 

Web source to generate the RDF model. 

 

 

2.3.2 Ontology Languages 
 

There have been a lot of research efforts in the representation language for Semantic 

Web. Semantic Web documents can be represented with XML/XML Schema but the 

tags are not machine processable. Afterwards RDF /RDFS were used to represent 

documents, which have certain limitations which are overcome by using OWL. RDF 

language representation does not have expressive constructs as compared to OWL. 

 
2.3.3 Ontology Development tools 

 
There are different Ontology development tools for the development of ontology. 

Some of the ontology development tools are commercial whereas some of them are 

open source. Most of the tools are research efforts and are available as open source. 

For example, the open source tools are Protégé [61, 62], NeOn Toolkit [63, 64], 

Apollo [65, 66], WebODE [67], OilEd [176], OntoEdit [177] and commercial 

available tool is TopBraid Composer [171]. 

 
2.4. ONTOLOGY 
 

2.4.1 Definitions 

 
The ontology has been defined by different researchers as - 

 

(i). “An artefact, constituted by a specific vocabulary used to describe a certain 

reality plus a set of explicit assumptions regarding the intended meaning of 

vocabulary” [68, 69]. 

 

This was the definition proposed by Guarino[69] in 1998 before ontology was applied 

in the domain of knowledge representation and knowledge retrieval. This specifies 

that ontology is a vocabulary set that specifies a real world scenario and has certain 

assumptions that are made to form that vocabulary. 

 

(ii). “Ontology is an explicit specification of conceptualization” [69, 70, 75]. 
 



 26 

This definition was given by Gruber [70] in 1993. ‘Explicit’ means the concepts, 

properties, functions, axioms must be clearly defined, and ‘conceptualization’ means 

abstract model of some phenomenon/application in the real word that can be well 

represented with concepts and the relation between the different concepts.  

(iii). “Ontology is formal specification of a shared conceptualization” [69, 71, 75]. 

 

This definition was given by Borst[71] in 1997. ‘Formal’ specifies ontology should be 

machine readable. ‘Shared’ means consensual knowledge which means that ontology 

should be such designed that it could be shared with different application. 

 

(iv). “Ontology is a formal, explicit specification of a shared conceptualization” 

[72, 75]. 

This was the definition given by Studer [72] in 1998, which was based on the merging 

of the earlier definitions given by Gruber [70] and Borst [71].  

 

(v). “Study of categories of things that exist or may exist in some domain. The 

product of such study called ontology is catalogue of types of things that are 

assumed to exist in a domain of interest D from the perspective of a person who 

uses a language L for the purpose of talking about D”[73]. 

 

This definition proposed by Sowa [74] in 2004 refers to that for defining domain it 

can be categorized into classification. Hence ontology is a catalogue of things for a 

domain which can be defined in a language. 

 

2.4.2 Reasons for developing Ontology 
  

It is the most important component of the Semantic Web which is used to represent 

domain knowledge. It describes a set of concepts and relationship between those 

concepts in a specified domain. The following reasons have been identified for 

developing ontology [75]: 

 

(i). To share common understanding of the structure of information among 

people or software agents. 

 

Ontology enables the concepts to be defined in a way that can be shared by people or 

agents. For example, if several websites contain information about a product and these 



 27 

websites share the same ontology then agent must be able to aggregate the 

information about the product from the different sites and present to the user or any 

required application.  

(ii). To enable reuse of domain knowledge 
 

To design ontology from scratch is a tedious and time consuming task, hence 

ontology defined for a domain must be designed to cover the concepts so that it can be 

reused /extended by some application rather than creating. These created ontology can 

be shared by keeping them in a ontology repository.  

 

(iii). To make domain knowledge assumptions explicit 

 
Explicit specification for domain knowledge makes it easy to change the assumption 

if the knowledge of the domain changes. It easily allows a new user to understand the 

domain terms easily. 

 

(iv). To separate knowledge from the operational knowledge 
 

It is better idea to separate operational knowledge from the domain knowledge from 

the knowledge management perspective because it leads to an inefficient system as, 

such a design hinders knowledge engineers ability to express deeper relationship 

among knowledge items [76]. 

 

(v). To analyse domain knowledge 
 

Ontologies are used to explain a domain completely with concepts, properties and 

relations that exists between them. Such a formal specification helps in analysing a 

domain explicitly and allows knowledge reuse. 

 

2.4.3 Ontology languages 
 

There are various languages in which ontology can be specified. The language 

specifies the formal semantics of a language. The language adds the expressiveness to 

the representation of knowledge allowing the inferences and reasoning support 

making the semantics of the language machine-accessible. The language stack for 

Semantic Web [77] is as given in Figure 2.8. 

 

 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Languages Stack in Semantic Web 

 

The various ontological modelling languages are 

1. XML & XML Schema [10] 
 

XML is a meta language which allows the user to define its own tags. XML acts as a 

uniform data exchange format between applications. XML Schema are used to define 

new schemas from other defined schemas. 

 

2 XOL (An XML-Based Ontology Exchange Language) [78]  
 

XOL (XML Ontology Exchange Language) is a frame based language with an XML 

syntax that is currently being designed for the exchange of ontologies for molecular 

biology [79]. Some of the predefined used in XOL language are specified in Table 

2.4.   

Table 2.4    Some Constructs of XOL language 

<class> Start of tag for defining 

class 

</class> End of tag for defining 

class 

<slot> Defines the range  

Type-of  Instance indicating type of 

class  

Instance-of Indicates instance of class 

Subclass-of Defines a subclass of class 

Minimum-cardinality Specifies minimum 

cardinality for a slot 

Maximum-cardinality Specifies maximum 

cardinality for a slot 

  XML  XML Schema 

XOL SHOE OML RDF(s) 

DAML+

OIL 
OIL 

Owl Full 

 

OWL Lite 

 

OWL DL 



 29 

 

Figure 2.9 shows an example of a class university having slot value for academic staff 

not to be more than 100. 

 

 

 

 

 

 

 

 

 

    
Figure 2.9 An example of XOL Language   

 

Figure 2.9 specifies a document in XOL language for a University specified with 

<class> tag and the range is specified using <slot> tag which has user defined tags 

within it (<organization>, <name>, <staff>,<value-type>,<numeric-max>). 

 

3. SHOE (Simple HTML Ontology Extension) [80] 

 

SHOE was developed at the University of Maryland. This was the first ontology 

description language created for the Semantic Web called as Simple HTML Ontology 

extension. It has basically syntax of HTML which is extended with new tags to 

semantically annotate the web pages. Consider an example of an ontology defined 

with SHOE tags defined in [81, 82, 83]. This is a well-defined language for 

knowledge annotation of web pages. It has knowledge annotator graphical user 

interface tool for embedding SHOE annotations which is used for automatic 

annotation of the pages [84]. 

The process of knowledge annotation with SHOE constructs has three phases – 

 

1. Development of a Ontology with SHOE syntax. 

2. Annotating the HTML web pages with the developed ontology. 

3. Allow the agents to retrieve the information. 

 

 

 

 

 

<class> 

<organization>University<//organization> 

<slot> 

<name>MM University</name> 

<staff>academic staff<staff> 

<value-type>integer</value-type> 

<numeric-max>100</numeric-max> 

</slot> 

</class> 



 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Example of SHOE Ontology for CS Department 

 

 

This example specifies the ontology of CS-Dept-Ontology defined using the SHOE 

language constructs. The different tags of SHOE syntax in the above example 

specifies (refer Table 2.5): 

 

Table 2.5 Different tags of SHOE  

<Ontology id=  

“CS-Dept-Ontology” version= “1.0” 

</ONTOLOGY> 

 

Ontology appears within 

these tags which 

specifies name of 

ontology, id and version. 

<HTML> 

<HEAD> 

<META HTTP-EQUIV= “SHOE” CONTENT = “VERSION=1.0”> 

<TITLE> CS Department Ontology </TITLE> 

</HEAD> 

<BODY> 

<! Declaring ontology name and version> 

<Ontology id= “CS-Dept-Ontology” version= “1.0” 

<! Declaration of ontology being borrowed from another ontology> 

<USE_Ontology id= “base-ontology” version= “1.0” Prefix= “base” 

URL=http://www.cs.umd.edy/projects/plus/SHOE/base.html> 

<! Defining categories> 

<DEF-CATEGORY NAME= “Department” > 

<DEF-CATEGORY NAME= “Worker” ISA= “Person”> 

<DEF-CATEGORY NAME= “Faculty” ISA= “Lecturer”> 

<! Relationships between categories> 

<DEF-RELATION_NAME= “Advisor”> 

<DEF-ARG POS= “1” TYPE = “Student”> 

<DEF-ARG POS=”2” TYPE= “Person”> 

</DEF-RELATION> 

</ONTOLOGY> 



 31 

<DEF-CATEGORY NAME> This tag make category 

definition that specify the 

categories under which 

various instances could 

be classified 

<DEF-RELATION> This is used to make 

relational definitions that 

specify format of n-ary 

relational claims that 

may be made by 

instances regarding 

instances and other data. 

    

Table 2.5 defines different tags specified in Figure 2.10 which defines CS-department 

ontology that defines categories using <DEF-CATEGORY> (Department, Worker. 

Faculty). Relationships exist between different instances using <DEF-RELATION> 

(Advisor relation exists between Student and Person).  

 

 
4. OML (Ontology Markup Language) [77] 

 

OML language was developed at University of Washington as XML serialization to 

the SHOE language. Therefore, OML and SHOE language share many features. OML 

is explicitly oriented towards the abstract semantics. All the features of XML Schema 

are also in OML. Consider an example of OML adapted from [79]: 

 

“Ralph Swick says that Ora Lassila is the creator of the resource 

http://www.w3.org/home/Lassila”. 

 

 

 

 

 

 

 



 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.11 Example of OML 

 
Figure 2.11 shows an example of OML in which different types (objects and 

relations) in ontology are defined using <Type. Object name>, <Type. Binary Relation 

name>, <Type. Relation name>. Reified [10] relations are defined using <Type. 

function name>. Instances are defined for each object name. For each reified relation 

Subject, Predicate, Object are defined. 

 

5. RDF [85] 
 

It is a foundation for processing metadata; it provides interoperability between 

applications that exchange machine-understandable information on the web .The RDF 

language representation has mainly three main components [10, 86]- 

<OML> 

<Type.Object name = "Document"/> 

<Type.Object name = "Person"/> 

<Type.BinaryRelation name = "create" 

source.Type = "Person" target.Type = "Document"/> 

<Type.BinaryRelation name = "attributedTo" 

source.Type = "Proposition" target.Type = "Person"/> 

<Type.Relation name = "Create" binrel = "create"> 

/* reified relation */ 

<Type.Function name = "agent" target.Type = "Person"/> 

<Type.Function name = "theme" target.Type = "Document"/> 

</Type.Relation> 

/* instances in a collection */ 

<Document id = "ora-homepage" about = "http://www.w3.org/Home/Lassila"/> 

<Person id = "ora" text = "Ora Lassila"/> 

<Person id = "ralph" text = "Ralph Swick"/> 

<Instance.ReifiedBinaryRelation id = "ora-create-homepage" 

source.Instance = "ora-home-page"    /* subject */ 

target.Instance = "ora"/>                   /* object */ 

<classification type = "creator"/>    /* predicate */ 

<attributedTo target.Instance = "ralph"/> 

</Instance.ReifiedBinaryRelation> 



 33 

(i).Resource 

It is anything that can have a URI; this includes all the web pages as well as 

individual elements of a document. A URI is a character string that identifies an 

abstract or physical resource on the web.  Examples of different URI schemes are as 

[87]: 

 

(i). A URI following the FTP scheme for file transfer protocol services 

ftp://ftp.mysite.com/files/foobar.txt 

 

(ii). A URI following the HTTP Scheme for Hypertext Transfer protocol services 

http://www.mysite.com/pub/foobar.html 

 

(iii). A URI following the MAILTO scheme for email addresses 

mailto:em@w3.org 

 

(ii). Property 

It is a resource that has a name and can be used as a property, for example author or 

title. 

(iii). Statement  

It is the combination of a resource, property, and a value. These combinations are also 

known as ‘Subject’,’ Predicate’ and ‘Object’ of a statement and are represented as <S, 

P, O>. Statements can be represented as graph. For example Figure 2.12 shows the 

statement Vandana is PhD Student of YMCA University of Science & Technology 

in <S,P,O> format.   

 

 

Subject     Vandana 

Predicate (property) #PhDstudent 

Object (literal)  http://ymcaust.ac.in 

 

 

 

Figure 2.12 Dividing the RDF statement into <S, P, O> 

 

            

  #PhDstudent 

 

 

 

Figure 2.13 RDF Graph Representation of statement 

   

Vandana  

http://ymcaust.ac.in 

 



 34 

Figure 2.13 represent the graph representation of the statement Vandana is PhD 

Student of YMCA University of Science & Technology where Subject (Vandana) 

is connected to Object(http://ymcaust.ac.in) through Predicate(#PhDstudent). 

 

6. OIL (Ontology Interchange layer/Ontology Inference layer) [88, 77] 
 

OIL is a web ontology language based on RDFS which supports a well-defined 

semantic vocabulary and reasoning constructs for ontology development. OIL was 

developed as a research product of European Union Project (EU). Consider a simple 

example of ontology defined in OIL language specification where different classes are 

defined using OIL language constructs  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.14 Example of OIL defining classes  

 

Figure 2.14 shows example of OIL defining classes where different classes are 

defined using class-def constructs and subclass using subclass-of construct(humans is 

subclass-of mammals) and property(eats) constraints, its value(plant)  using slot-

constraint, value-type. 

 

OIL is based on following three elements for representation [89]: 

 

 

(i). Frame Based Systems 
 

These form the modelling primitives for OIL language. It supports the primitives 

with which classes, superclass, relations and properties (slots) can easily be 

described to specify a ontology using OIL. 

 

class-def mammals 

class-def humans subclass-of-mammals 

class-def animal subclass-of mammals subclass-of NOT human 

class-def plant subclass-of NOT human  subclass-of NOT animal 

class-def defined herbivore 

subclass-of-animal 

NOT herbivore 

slot-constraint eats 

value-type plant  



 35 

(ii).   Description Logics(DL) 

 
The knowledge can be represented in form of concepts and roles (slots) which 

enables reasoning support for the language. An important aspect of DL is that it 

has well understood theoretical properties and meaning of any expression of DL 

that can be described in mathematical precise way which enables reasoning with 

concept descriptions and automatic derivations of classification taxonomies [90]. 

 

(iii). Web Standards 
 

OIL is based on the web standards of W3C that has syntax of XML, RDF and 

RDFS hence; it has the compatibility with the existing web standards to enable its 

use on the web.  

 

7. DAML (Darpa Agent Markup Language) [91]   

 

The DARPA (Defence Advanced Research project Agency) Agent Markup Language 

was started in 2000. The initial version of DAML was called as DAML-ONT but with 

the research effort of EU/US, it emerged into DAML+OIL, and is considered as more 

robust language than RDF and RDFs. The language has the constructs for knowledge 

representation. DAML language specification is built upon RDF and supports 

Description Logics which has the inference constructs. Certain language constructs of 

DAML are defined in Table 2.6  

Table 2.6 Language Constructs of DAML 

 

Construct Definition 

Daml:restriction with 

daml:onProperty 

Specifies a slot being restricted on the property 

specified 

Daml:intersectionOf Disjunction of class expression 

Daml:unionOf Conjuction of class expression 

Daml:complementOf Negation of Class expression 

Daml:mincardinality Minimum cardinality constraint on a Property 

Daml:maxcardinality Maximum cardinality constraint on a Property 

Daml:transitiveProperty Specifying the transitive property  

Damlinverseof Specifying the inverse  property 



 36 

 Example of DAML 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 
 

Figure 2.15 Example of DAML 

 
This example in Figure 2.15 describes ontology in DAML for a class child which is 

subclass of class person. It specifies that the child can have one mother by limiting the 

cardinality on property #hasmother to one. Property #hasparent has cardinality two, 

which is specified by <daml:unionOf> construct,  specified with class mother and 

father. 

 

8. OWL [92]  
 

OWL Language has emerged from DAML+OIL language on the recommendation of 

W3C. This layer adds more vocabulary than RDF for describing properties and 

classes; relations between classes (e.g. disjointness), cardinality (e.g. exactly one), 

equality, richer typing of properties, characteristics of properties (e.g. symmetry) and 

enumerated classes [8]. OWL provides three increasingly expressive sublanguages: 

OWL Lite, OWL DL, OWL Full [94]. The features of these three sublanguages are as 

follows [93]: 

 

(i). OWL Lite [93, 10] supports those users primarily needing a classification 

hierarchy and simple constraints. For example, while it supports cardinality 

<daml:Class rdf:ID=”child”> 

<daml:subClassof rdf:resource = “#person” > 

  <daml:restriction> 

   <daml:onProperty rdf:resource= “#hasMother”/> 

   <daml:cardinality>1</daml:cardinality> 

  </daml:restriction> 

 </daml:subClassof> 

 <daml:subClassof> 

<daml:restriction maxcardinality=”2”> 

   <daml:onProperty rdf:resource= “#hasParent”/> 

   <daml:cardinality>2</daml:cardinality> 

   <daml:Class> 

   <daml:unionOf rdf:parseType=”daml.collection”> 

   <daml:Class rdf:about = “Father”/> 

   < daml:Class rdf:about = “Mother”/> 

   </daml:Class> 

  </daml:restriction> 

 </daml:subClassof> 

</daml:Class> 

  



 37 

constraints, it only permits cardinality values of 0 or 1. It should be simpler to provide 

tool support for OWL Lite than its more expressive relatives, and OWL Lite provides 

a quick migration path for thesauri and other taxonomies. OWL Lite also has a lower 

formal complexity than OWL DL. 

(ii). OWL DL [93, 10] OWL DL includes all OWL language constructs, but they can 

be used only under certain restrictions (for example, while a class may be a subclass 

of many classes, a class cannot be an instance of another class). OWL DL is so named 

due to its correspondence with Description Logics, a field of research that has studied 

the logics that form the formal foundation of OWL.  

(iii). OWL Full [93, 10] is for users who want maximum expressiveness and the 

syntactic freedom of RDF with no computational guarantees. For example, in OWL 

Full, a class can be treated simultaneously as a collection of individuals and as an 

individual in its own right. OWL Full allows an ontology to augment the meaning of 

the pre-defined (RDF or OWL) vocabulary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 University ontology (some concepts) specified in OWL language 

<rdf:RDF 

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns# 

xmlns:rdf=http://www.w3.org/2000/01/rdf-schema# 

xmlns:owl=http://www.w3.org/2002/07/owl#> 

<owl:Ontology rdf:about=”xml:base”/> 

 

<owl: Class rdf:ID= “Professor”> 

 <rdfs:subClassof rdf:resource= “Person”/> 

<owl: class> 

<owl:Class rdf:ID= “Student”> 

 <owl:disjointWith rdf:resource= “Professor”/> 

</owl:Class> 

 

<owl:Class rdf:ID= “faculty” 

 <owl:equivalentClass rdf:resource= "#Profesor”/> 

</owl:class> 

<owl:Class rdf:about= “Course”> 

 <rdfs:subClassof> 

  <owl:Restriction> 

   <owl:onproperty rdf:resource “#istaughtby”/> 

   <owl:hasvalue  rdf:resource = “#faculty”/> 

  </owl:Restriction> 

 </rdfs:subClassof> 

</owl:Class> 

 



 38 

 
University Ontology (refer to Figure 2.16) specifies following classes:   

1. Professor 

      2. Student  

      3. Faculty equivalent to class Professor 

      4. Course, where course having restriction that it can be taught by faculty 

 

Table 2.7 Comparison of different Ontology Languages 

 

 

Table 2.7 gives a comparative analysis of different ontology languages on various 

parameters. RDF, OWL are the most widely used ontology languages. OWL is 

considered to be more expressive language as compared to RDF but is more complex.  

 

2.5 ONTOLOGY DEVELOPMENT TOOLS 
 

Ontology development tools are used for developing ontology. There are lot of tools 

available for ontology development, some of them are research efforts of universities 

Ontology Language Language  

Specification 

Developed at  Basic concept 

XOL[78 ] 
 

Ontology 

exchange 

Language 

US 

Bioinformatics 

Community  

Extensions of XML 

constructs  

SHOE[80,81,82,83,84] Simple HTML 

Ontology 

extension 

 

 

University of 

Maryland  

Extension of HTML 

semantics with the 

semantics added to 

the constructs  

OML[79]  Ontology 

Markup 

Language 

University of 

Washington 

Extension of XML 

Schema  

RDF[85,86 ]  Resource 

Description 

Framework 

W3C Extension Of XML 

constructs  

OIL[88,89,90]  Ontology 

Interchange 

Language 

W3C Syntax and 

semantics based on 

XOL,RDF 

DAML[91] Darpa Agent 

Markup 

language 

Joint committee 

from US and 

European Union  

Extension of RDF 

and RDF Schema  

OWL[92] Web ontology 

language 

W3C Syntax  based on 

RDF,XML 



 39 

and are freely available whereas some of them are commercially available. The 

detailed descriptions of some of the tools are as follows: 

 

2.5.1 Protégé [75, 95] 
 

Protégé is an ontology editor developed by Stanford Medical Informatics (SMI) group 

at Stanford University. It is an open-source platform for ontology development. It has 

been used for many years for knowledge acquisition of domain knowledge and                                    

for building domain ontology in recent years. The architecture of Protégé [96] is 

depicted in Figure 2.17 

 

 
 

Figure 2.17   Protégé Architecture 

 



 40 

The architecture of Protégé can be broadly divided into three parts as shown in Figure 

2.17. 

 

1. Core Protégé API 2000 
 

The core of Protégé 2000 consists of Protégé Knowledge Model. The Protégé Model 

consists of knowledge base such as instances, classes etc., any access to these 

elements is through Protégé application interface (Protégé APIs).  

 

2. Persistent Storage 
 

This component is used to store the knowledge base, the schema in relational database 

storage and other Protégé files in flat file storage through the mapping for read/write 

function. 

 

3. User interface 
 

User Interface consists of Plug-ins, Tab-plug-ins in default user-interface. With the 

use of Plug-ins the development workload can be distributed across multiple 

programmers [96]. The plug-in architecture also help the user to incorporate the 

programmed Plug-ins into the architecture to make it more customizable, There are 

lot of slots and tab plugins available which are developed from time to time and are 

compatible with Protégé architecture. 

 
 

Figure 2.18 GUI Interface for Protégé 



 41 

 

 

 

Ontology 

 Development 

 Suite 

 

 
 

 

 

 

 

Component based 

 

Easy integration 

 

RAD 

Ontology library 

Ontology 

edition 

Ontology 

learning 

Ontology 

merge 

Ontology 

browsing 

Ontology 

translation 

Ontology 

alignment 

Ontology 

evaluation 

Ontology 

evolution 

Ontology 

configuration 

management 

Ontology 

documentation 

Ontology access 

services 

 

Metric 

services 

 

Administration 

Services 

 

Query 

services 

Ontology 

upgrading 

services 

Ontology 

selection services 

 

Semantic Portals 

 

Brokers 
Knowledge 

management 

 

Ontologies 

 

Ontology Development Tools 

Ontology Based Applications 

Ontology Middleware 

 

Figure 2.18 shows the default user interface of Protégé development tool used to 

develop ontology which has the features of creating classes, data property, object 

property for modelling a concept.  It has the features of querying the ontology using 

SPARQL and DL Logic. 

 

2.5.2 WebODE [97] 
 

WebODE architecture is based on client server architecture. Its architecture is highly 

extensible and usable, as new services can be added to this architecture very easily. 

Ontologies are stored in WebODE in relational database. WebODE architecture 

supports collaborative ontology development. 

The architecture of WebODE as proposed in [98] is given in Figure 2.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2.19 Architecture of WebODE 

 



 42 

 The main components of WebODE are discussed below: 

 

1.   Ontology Development Tools 
 

This component includes Ontology merging, Ontology translation into another 

language like from RDF to OWL, Ontology browsing, Ontology learning, 

Ontology documentation and many other ontology development tools 

 

2. Ontology Middleware 
 

This component has a ontology repository and an interface for various services 

like ontology access, ontology selection, metric service, ontology upgrading 

service, administration service, query service provided by WebODE architecture. 

 

3.    Ontology Based Applications 
 

This component has applications which are based on ontology provided by 

WebODE like Knowledge Management Application, Semantic Portals which are 

achieved interacting with middleware layer. 

 

4. Ontology Development Suite  
 

This component helps in Rapid Application Development (RAD) and integration 

of ontology application into the required systems. 

 

2.5.3 NeOn toolkit [102] 

 
NeOn is ontology development tool which supports multi-platform ontology 

engineering environment. It is built on eclipse platform and has modular architecture. 

NeOn is a project involving fourteen European partners and is co-funded by European 

Commission’s sixth framework[103].Under this research effort various plug-ins have 

been developed for various ontology life-cycle stages for example for  visual 

modelling (OntoModel),Ontology reuse (Watson), Ontology  learning(text2Onto), 

Ontology Mapping(R2O,FOAM),Ontology diagnosis and repair (RaDON)[102]. 

NeOn toolkit has 45 Plug-ins which covers all of ontology lifecycle aspects. The 

architecture of NeOn toolkit is shown in Figure 2.20. 

 

 

 

 



 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.20 Architecture of NeOn Toolkit 

 

The architecture of NeOn (see Figure 2.20) consists of following components: 

 

1. GUI Components 

 

GUI interface of NeOn toolkit has different components for OWL editing, 

browsing and visualization interface component. 

 

2. Engineering Components 

 

This component acts as an interface between the infrastructure services and GUI 

interfaces, providing different components that interact with infrastructure 

services for giving output to the user. 

 

3. Infrastructure Services 

 

This component consists of infrastructure services provided by the architecture. 

For example Ontology Registry services are provided by Oyster [102,104], 

Ontology reasoner services are provided by KAON [105].  

 

 

 

 
GUI  

Components 

 

 
Engineering  

Components 

 
Infrastructure 

 Services 

Input Output mechanisms Refactoring 

Search facilities OWL modelling 

OWL Editing 

Ontology visualisation 

GUI estimation points 

OWL Browsing 

SWT estimation 

Datamodel 

Repository 

Reasoner 

Registry 



 44 

2.5.4 SWOOP [99] 
 

SWOOP (Semantic Web Ontology Overview & Perusal) ontology editing tool is web 

based ontology editor and browser. SWOOP architecture is based on Model-View-

Controller design paradigm [100]. The architecture of SWOOP is as depicted in 

Figure 2.21. 

 

 

Figure 2.21 Swoop Architecture 

 

 

. The architectural components of SWOOP model are as discussed below: 

 

1. SWOOP Model 
 

This component store ontologies and ontology related information which are 

loaded by reasoners into the SWOOP model. 

 

2. Reasoners 
 

SWOOP architecture has the inferential capability which is supported by   

integrated reasoners Pellet [101] and OWL inference engine [99,100]. 

 

3. Rendering 
 

This component is used for visualization and loads the new reasoners and 

renderers dynamically when required. The different level of editing and rendering 



 45 

provided by SWOOP architecture are ontology rendering, hierarchy rendering and 

entity rendering. 

 

4. Plug-in Based system 

 
All the control of this architecture is handled through this component. This 

component is responsible for loading new reasoners or renderers dynamically into 

the system. 

 

Table 2.8 Comparative Analysis of ontology editing tools 

 

Tool Developed by Open Source/commercial 

Tool 

Protégé[96] Stanford university Open Source 

NeOn Toolkit[102] European Research 

Community 

Open Source 

WebODE[97,98] Technical School of 

Computer Science, Spain 

Open Source 

SWOOP[100] MIT University Open Source 

  
The comparative analysis of the above discussed development tools have been shown 

in Table 2.8. Among these tools, Protégé is the most widely used tool for ontology 

development because of the plug-ins and the features it supports. 

 
The next section discusses about the rule languages with inferential capabilities for 

ontologies. 

 
2.6 ONTOLOGY RULE LANGUAGES 

 
Ontologies are the mechanism for knowledge representation which can be specified 

by using different languages like RDF, RDF Schema, OWL. These languages offer a 

wide variety of expressiveness constructs to represent a domain. The classes, 

properties, property restrictions can be easily implemented using these languages. For 

inferential capability, that is to deduce new facts from the knowledge base various 

rule languages are used on these languages. The various rule languages which are 

widely used for inference mechanism are: 

 

 



 46 

1. SWRL(Semantic Web Rule Language)[10,107] 
 

SWRL is a rule language for the Semantic Web based on the language syntax which 

is a combination of OWL DL and OWL Lite with Horn logic [107]. SWRL rules are 

of the form antecedent-consequent pair where antecedent is referred to as body part of 

the rule and consequent refers to the head part of the rule. The head and body part of 

rule may be conjunctions of one or more atoms. A SWRL rule is of the form: 

 

A1,………, An    > B1,…….., Bn 

 

Where A1…….An refers to the head part of the rule and commas represent the 

conjunction of one or more atoms and B1……Bn refers to the body part of the rule. 

For example consider ontology of a university knowledge base. SWRL rules for the 

same can be defined as specified in Figure 2.22: 

  

 

  Figure 2.22 SWRL Rules implemented in Protégé 



 47 

Figure 2.22 shows SWRL rules implemented in Protégé. Consider one of the rule 

Professor(?p)^hasExperience(?p,?exp)^swrlbgreaterThen(?exp,5)�FulltimeProfessor 

This rule specifies that a professor which has experience greater then 5 years is 

fulltime professor. 

 

2. Rule Markup language (RuleML)[106] 

 
RuleML is a Rule Markup language for Semantic Web. RuleML has four categories 

of rules- 

 

(i). General reaction rules – 
 

These rules are applied in the forward direction for observing/checking 

events/conditions and performing an action if and when all events/conditions have 

been perceived/ fulfilled. 

 

(ii). Integrity constraints rules- 
 

These rules are also forward-oriented, i.e. triggered by updates, mainly for 

efficiency reasons. 

 

(iii). Derivation rules 
 

The category of these rules can be applied in the forward direction as well as in a 

backward direction, the latter reducing the proof of a goal (conclusion) to proofs 

of all its subgoals (premises).  

 

(iv). Facts rules 
 

These classes of rules are used for an application direction.  

The rule “The customer is given 10% discount if he spends 5000Rs for a bill” 

is represented in syntax of RuleML as   

 

 

 

 

 

 

 



 48 

 

 

<Implies> 

 <head> 

  <Atom> 

   <Rel>discount</Rel> 

   <Var>customer</Var> 

   <Ind>10%</Ind> 

  </Atom> 

 </head> 

 <body> 

  <if> 

  <Atom> 

   <rel>spend</rel> 

`   <Var>customer</Var> 

   <ind>5000Rs</ind> 

   <ind>Bill</ind> 

  </Atom> 

  </if> 

</body> 

</implies> 

 

  

 

Figure 2.23 Example of Rule Language 

 

Figure 2.23 shows an example of RuleML where it starts and ends with <implies> 

</implies> syntax and is divided into <head><atom> and <body> <atom>part. The 

relation predicate (discount, spend) is represented by <rel> tag. The variables 

(customer) is represented with <var> tag and constant values(10%,5000Rs) are 

represented by <ind> individual  tag.    

 

The next section discusses about the various semantic search engines and their             

architecture. 

 

2.7 SEMANTIC SEARCH ENGINES 
 

Semantic Search Engines searches Semantic Web data from the web which is in the 

form of RDF documents, OWL documents and ontologies. Semantic search engines 

work on highly structured languages such as RDF, OWL, DAML hence making the 

contents to be machine processable. The different Semantic Web search engine are 

described as below: 

 

 



 49 

2.7.1 Ontokhoj Ontology Search Engine  

 
Ontokhoj [108, 109] is an Ontology search and classification tool that gives a ranked 

list of ontologies for a given query. Ontokhoj searches and ranks Ontologies (RDF, 

DAML+OIL, OWL) over web. It also uses the existing Classification algorithms like 

K-nearest Neighbours algorithm (KNN) and Naive Bayes algorithm to classify the 

crawled ontologies into respective domain hierarchy which is derived from DMOZ 

(Directory Mozilla) Open Directory Project [110]. This tool is developed in Java 

having the following main functionalities: 

 

1. Ontology Crawling  

 

Ontology crawling is based on the underlying language representation which uses the 

concept of URIs to further crawl i.e. hyper linking concept. The crawler is designed to 

retrieve ontologies represented in different languages i.e. RDF, OWL, DAML+OIL 

format. For example Figure 2.24 shows hyper linking between RDF statements  

 

<rdf:RDF> 

<rdf:Description:about=”CI34” >  

<uni:coursename>Ressearch Methodology<uni:coursename> 

<uni:istaughtby rdf:resource= “http://www.mvruniv.edu/faculty/shrredharan”  

</rdf:Description> 

 

 

 

<rdf:RDF> 

<rdf:Description rdf:about= http://www.mvruniv.edu/faculty/shrredharan> 

<rdf//:description id=”Shreedharan”  

<uni:name>Mr. Shrredharan<uni:name> 

<uni:designation>Professor<uni:designation> 

</rdf:Description> 

 

 

Figure 2.24 Hyper linking of RDF fragments 

 

The example in Figure 2.24 indicates the referencing model of URI where URI are 

further used for crawling. The property istaughtby has a link which is described at a 

different location, showing the hyper linking of RDF documents. The Ontologies are 



 50 

of distributed nature that is the RDF fragment may have same URI but may be present 

at different locations. Hence, after crawling, the RDF chunks of ontology are 

aggregated.  

  

2. Ontology Classification 
 

After crawling and aggregating, ontologies are classified to fit into a predefined 

category of classification. For this, traditional text classification techniques are used. 

The term used for defining concepts and relationships are considered as plain text. 

The classification is based on algorithms like Naïve Bayes, TF-IDF/Rocchio, k-

Nearest Neighbours algorithm (KNN) and Probabilistic Indexing. The Rainbow Tool 

[108] was used for classification which is a text classification tool based on the above 

mentioned algorithms. The Rainbow Tool is trained using DMOZ directory of 

classification. The ontology is then classified based on DMOZ classification category. 

Ontologies are further visualized using GraphViz, which converts the ontology into 

visual representation. 

  

3. Ontology Ranking  

 
For ranking the ontologies retrieved, specific features of underlying knowledge 

representation of RDF model and URIs like different types of links, distance, weights 

are considered. Priorities are given to different types of relationships. 

 

In this algorithm, apart from considering the rank of the referrer, the weight of the 

type of reference (relationship) is also taken into consideration. Table 2.9 shows the 

weights of hyperlinks considered while ranking [108]. 

Table 2.9 Weights of Hyperlinks 

 

Priority(Weight) Relationship Language 

specific 

1 Instantiation rdf:type 

 

2 Subclass rdfs:subclass, 

daml:subClass 

 

3 Domain/range rdfs:domain, 

daml:range 

           

 

 



 51 

Metrics for Ranking Ontologies in OntoKhoj –  

 

O = the ontology whose rank is to be determined. 

α = the number of ontologies referring O 

     β
i = the number of referrals from ontology Oi to O.  

  Ω i = the total number of outgoing referrals from ontology Oi.  

     T = the weight of the reference 

      N =normalization factor.  

 

The OntoRank, OR (O) is defined in equation 2.4 as  

 

∑ ∑
= =

Ω=
α β

1 1

1 *)(*/1*)(
l

i

j

ji TOORNOOR    (2.4) 

 
 

The above mentioned metrics is used to find the ontology rank corresponding to the 

weight and the number of referrals. The Ontokhoj search engine is implemented in 

Java to crawl ontologies from the Semantic Web, aggregate the different chunks of 

ontologies distributed using URIs, classify the ontologies and then ranking the 

ontologies in order of their decreasing rank based on weights of links and referrals of 

ontologies. This system is useful in finding ontologies in their ranked order. 

 

2.7.2 Swoogle search engine  

 
Swoogle [111] is a crawler-based indexing and retrieval system for the Semantic 

Web. It extracts metadata for each discovered document, and computes relations 

between documents. Discovered documents are indexed by an information retrieval 

system which either use character N-Gram [112] or URIrefs [112] as keywords to find 

relevant documents and to compute the similarity among a set of documents.  

 

 

 

 

 



 52 

 

Figure 2.25 Architecture of Swoogle 

 
The architecture of Swoogle consists of following main components: 

 

1. SWD Discovery Component 
 

This component has three different crawlers that discover Semantic Web documents 

on the World Wide Web. These crawlers are also responsible for keeping up-to date 

information about crawled semantic documents. 

 

(i). Google crawler –Swoogle uses Google APIs to find Semantic Web 

documents, this is done by using Google web service “filetype”, with this 

service files with extensions .rdf, .owl, .n3, .daml are searched and the set of 

documents returned act as seed URLs for Swoogle. 

 

(ii). Focussed crawler –Based on the heuristic that, Semantic Web document 

found in one directory will probably contain more Semantic Web documents, 

the seed URL found with the Google crawler is fed to the focussed crawler to 

focus on a particular directory and crawl more Semantic Web documents 

linked to that directory. 

 



 53 

(iii). Swoogle crawler-This crawler uses Jena framework for parsing and analyzes 

the contents of Semantic Web documents to discover more Semantic Web 

documents. This crawler works on the following analyzation of the contents- 

 

a. rdf:seeAlso property of an instance links to another Semantic Web 

document 

b. owl: imports links to another Semantic Web document 

c. The construct foaf: Person in a FOAF ontology links to another FOAF 

document. 

 

Therefore, for discovery of Semantic Web documents, Swoogle uses three crawlers 

Google crawler, Focussed Crawler, Swoogle crawler and in addition Swoogle has the 

web based interface to allow the registered uses to submit a URL of Semantic Web 

document, which is also used by Swoogle as seed URLs. 

  

2. Metadata Creation Component 

 

This component is used to collect semantic metadata to make the search experience 

more effective and efficient. This component collects three different types of 

metadata:  

(i). Basic Metadata 

 
Basic metadata of a Semantic Web document includes the following information 

• Encoding-       It gives the encoding information of the document i.e.                

whether the document is “RDF/XML”,”N-TRIPLE” or 

“N3”. 

• Language-      It specifies the language used in Semantic Web 

document.   The languages identified by Swoogle are 

“OWL”,”DAML+OIL”,”RDFS” and “RDF”. 

• OWL species-   It specifies the language species used in the document. 

An OWL document is specified in three OWL species 

“OWL Full”, “OWL-DL” and “OWL-Lite”. 

 

 

 



 54 

(ii). RDF statistics Metadata  
 

This metadata information classifies a document either as Semantic Web Ontology 

(SWO) or an instance document which is called as Semantic Web Databases 

(SWDBs) based on ontology-ratio metrics as mentioned in [111,113] equation 2.5 as 

 

   R (foo) =      |C (foo)|+|P (foo)|          (2.5) 

                  |C (foo)|+|P (foo)|+|I (foo)| 

  

 Where for a Semantic Web document 

      |C (foo)|=refers to set of classes 

|P (foo)|=refers to set of properties 

|I (foo)|= refers to set of individuals  

 

The value of R (foo) varies between 0 to 1, where “0” means pure SWDB and the 

value of ontology-ratio “1” is classified as pure “SWO”. 

 

(iii). Relational Metadata 
 

This component collects information about the inter-relations that exists among 

different Semantic Web documents. These relations are identified by analyzing the 

Semantic Web document. The different inter-relations that exists between documents 

are- 

 

• IM-One SWD can import another SWD. Constructs used for this are 

owl: imports 

• EX: one SWD extends another SWD. Constructs used for this are 

rdf:subPropertyOf, rdf:subClassOf 

 

3.  Data Analysis Component 

 
This component uses the information of the metadata component which classifies 

SWDB with SWO using ontology-ratio metrics to further calculate the rank of 

Semantic Web documents. The ranking algorithm of Swoogle is based on PageRank 

algorithm of Google, but the random surfer model of Google is not suitable for 

Semantic Web documents because of the different semantics of the underlying 

language used for representation for Semantic Web. 

 



 55 

4. Interface component 
 

This component deals with the different services to be provided to the user and 

Semantic Web community which are as- 

•    Web Server- Supports human user interface through the website        

http://swoogle.umbc.edu[114] 

•  Web Service- are provided using REST[111] interface 

•  Agent Service-Services to provide Swoogle as agent service. 

Swoogle is a search engine for searching ontologies which provides the method for 

crawling ontologies, metadata creation, ranking of the ontologies. 

 

2.7.3 Falcon 

 
Falcon [115, 116] is a novel keyword based ontology search engine. It retrieves 

concepts whose textual description is matched with the terms in the keyword of the 

query and ranks the results according to both query relevance and popularity of 

concepts. The popularity is measured based on large datasets collected from the real 

Semantic Web. The architecture of Falcon Concept search [116] depicted in Figure 

2.26 has been discussed as follows: 

 
 

Figure 2.26 Architecture of Falcon Search Engine 

 
 



 56 

1. Crawler 
 

The Crawler application crawls the contents from the Semantic Web which are only 

Semantic Web documents using content negation which accepts only applications that 

are RDF/XML. The URIs in these fetched documents are sent to crawler for further 

fetching of the contents from the Semantic Web. The discovered contents are then 

parsed using Jena parser and submitted to quadruple store. 

 

2. Quadruple store 
 

In this component the parsed RDF triples from the RDF document and the document 

URI are stored in the quadruple store which is implemented based on MYSQL 

database. 

 

3. Meta-analysis Component 
 

This component analyses the semantic contents and creates metadata. It generates the 

metadata like the type of entity identified by a URI. 

 

4. Indexer 

 
The indexes are generated using Apache Lucene [117]. Unlike traditional model 

where indexes are created for terms to the URls of the pages containing those terms, 

such an index cannot be created for Falcon as the concepts are RDF triple. In this 

system there are following two indexes generated: 

(i). for each concepts, terms (which are extracted from RDF description), are         

linked to its virtual documents that contain those terms  

 (ii). Second index consists of ontologies to the concepts. 

 

For each query entered the result set is based on the intersection of the result set 

obtained from these inverted indexes. 

 

5. Ranking 
 

This components ranks the concepts based on the 

  

(i). Popularity of concept 

(ii). Term based similarity between the virtual document of concepts and the 

user entered query.  



 57 

 

The ranking metrics is given by equation 2.6 as 

 

RankingScore (c, q) = TextSim (c, q). Popularity(c)                           2.6 

 

The raking score of a concept to a query entered is given as the product of textsim of a 

concept to a query and popularity coefficient of concept. 

 

6. Generating snippets 
 

This component is responsible generating query-relevant snippet for each concept 

from the data stored in the quadruple store. 

 

7. Recommending Ontologies 

 

This component recommends ontologies to the user based on the ranking concepts 

 

8. Browsing concepts 
 

This component returns the RDF description from the quadruple store of the concept 

queried by the user. 

 

Falcon is a search engine for Semantic Web documents which parses the Semantic 

Web documents into RDF triples and allows the keyword based queries on objects, 

concepts and ontologies. 

 

2.7.4 OntoSearch Search Engine 

OntoSearch [181] is a kind of "Ontology Google", which help users find ontologies 

on the Internet. OntoSearch combines Google Web APIs with a hierarchy 

visualization technique. It allows the user to perform keyword searches on certain 

types of “ontology” files, and to visually inspect the files to check their relevance. 

 

 

 

 

  

 

 



 58 

 
 

Figure 2.27 Flow of Ontosearch 

 

 
Figure 2.27 depicts the flow of OntoSearch system which uses the Google Search 

engine for inputting the keywords and the relevant RDFs files are searched matching 

the keywords returning a set of RDF files, which are presented to the user for 

selection. User chooses the relevant RDF files from a set of returned results and 

displays the file in a hierarchical view which is returned to the user. Based on the 

structural analysis of ontology, user selects the files and save the selected ontology to 

the ontology library for further use. 

 

OntoSearch system is implemented in Java and JSP and Jena APIs which is used for 

searching ontologies and maintaining an ontology repository to be used as web 

service.  

 

2.8 SEMANTIC WEB QUERY LANGUAGES 

 
Query languages used for querying from structured databases such as Structured 

Query language (SQL) and languages used for querying from web data such as XML 

Path Query Language (XPATH) cannot be used for querying semantic data specified 

in languages such as RDF, OWL. Among the various languages developed for 

querying semantic data content SPARQL [119] is the most commonly used query 



 59 

language for Semantic Web as all others are languages lacks a lot of features and are 

not supported by many tools and hence are not widely used. The various query 

languages developed have been as discussed below: 

 

1. SquishQL(SQL like Query language)[178] 

Squish (pronounced as “SQL-ish) query syntax are similar to SQL query language. It 

is a query language based on graph navigation. SQL query language for RDF provides 

consistent, human-understandable, access to repositories of semantic data, whether 

stored files or large databases, enabling application programmers to create Semantic 

Web applications quickly [178]. For example consider Figure 2.28: 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2.28 Query to find the titles of documents in 

http://example.com/xmleurope/presentations.rdf adapted from [178] 

 

Figure 2.28 shows a query in SquishQL which selects title from 

http://example.com/xmleurope/presentations.rdf   document, by selecting the 

document where the predicate is <dc: title>, and the documents are of type FOAF 

documents. Using clause specifies abbreviation for long URIs by defining a string 

prefix; this example specifies URIs for Dublin Core (DC), FOAF (friend-of-a-friend), 

RDF (Resource Description framework). 

 

 

 

 

SELECT ?title 

FROM http://example.com/xmleurope/presentations.rdf 

Where 

 (?doc, <dc:title>,? Title). 

 (?doc, <rdf:type>,<foaf:Document>) 

Using 

 dc      FOR  <http://purl.org/dc/elements/1.1/>, 

 foaf FOR  < http://xmlns.com/foaf/0.1>, 

 rdf FOR <<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

 



 60 

2. RDQL (RDF Query language) [179] 

This language was developed by Hewlett Packard. The syntax of RDQL is similar to 

SQL select clause, but does not include from clause. Consider an example of RDQL 

query  

Select ?x where(?x,<rdfs:label>,”abc”)  

 

This query will list all resources with abc in the variable x.  

 

3. SeRQL (Sesame RDF Query Language) [122] 

 
SeRQL (pronounced “circle”) is considered as second generation RDF Query 

language. This language is based upon earlier query languages such as RDQL [179] 

and N3. SeRQL uses a path expression syntax [123] that is similar to the syntax used 

in RQL, and is based on the graph nature of RDF; the path is expressed as a collection 

of nodes and edges, where each node is denoted by surrounding curly brackets. 

 

{node} edge {node} edge {node} 

 

Consider an example to  query, RDF graph for Book Title Published by Pearson, the 

path expression for this query would be specified by 

 

{Title}      <foo:publishedby>      {Publisher}   <rdf:type>  {foo:Pearson>} 

 

This query will list all Book titles by publisher Pearson. 

 

 

4. SPARQL (SPARQL Protocol and RDF Query language) [118, 119] 

 
SPARQL is a standard language for Semantic Web. It is W3C standard 

recommendation for querying RDF data content. SPARQL query language is based 

on matching of RDF triple Graph pattern. The different constructs supported for RDF 

query language are: 

• SELECT Query 

• CONSTRUCT Query 

• DESCRIBE Query 

• ASK Query  

SPARQL currently has W3C Candidate Recommendation status as being the “Query 

Language for RDF”. In particular, SPARQL has the following facilities [119]: 

• Extract RDF subgraphs, 



 61 

• Construct a new RDF graph using data from the input RDF graph queried, 

• Return “descriptions” of the resources matching a query part, 

• Specify optional triple or graph query patterns (i.e., data that should contribute 

to an answer if present in the data queried, but whose absence does not prevent 

an answer being returned), 

• Test the absence, or non-existence, of tuples. 

 

Similar to SQL, which is used for querying structured databases, SPARQL queries is 

used to query unstructured databases and have a SELECT-FROM-WHERE structure. 

There are other query languages which are considered as first generation query 

languages, which has a good expressive query constructs feature set but they are not 

supported by all the tools for ontology development and lacks interoperability feature, 

hence these query languages are not considered as the standard language for querying. 

For example, consider a semantic data fragment of an FOAF ontology which consist 

of name, designation and email-address and other information of a person. Query on 

such data to query name, designation with SPARQL can be used as shown in Figure 

2.29. 

 

PREFIX foaf:<http://xmlns.com/foaf/0.1/. 

PREFIX exof: foaf:<http://example.org> 

SELECT   ?name  ?designation 

WHERE {  

?x foaf: name   ?name 

foaf: designation  ?designation 

} 

 

               Figure 2.29 Example of SPARQL 

 

Figure 2.29 shows example of SPARQL to select name, designation variable where 

predicate is foaf: name and foaf: designation from http://example.org.  The main 

query constructs used in this query are as follows: 

 
(i). PREFIX- PREFIX keyword is used to declare a namespace for a URI. 

(ii). SELECT-This keyword is used to specify data items that will be included in the   

result set. In this for example variable name, designation is included in 

result set. 



 62 

(iii). FROM- This keyword specifies the data set on which the query will be   

executed. 

(iv). WHERE-This keyword specifies the triple/graph pattern which query will match 

against a RDF graph.  

 

Variable names have question mark in their beginning. This triple query will be 

evaluated against all the triple that exist in the semantic data. 

   

 

5. SQWRL (Semantic Query enhanced web rule Language) [180] 

 
It also has SQL-like operations to query knowledgebase of OWL. It is considered as 

an expressive language for performing queries on OWL ontologies. SQWRL takes a 

standard SWRL rule antecedent and effectively treats it as a pattern specification for a 

query. It replaces the rule consequent with a retrieval specification. The core SQWRL 

operator is sqwrl: select [180]. Consider an example Query “Return all the person 

whose age is greater than 18” of Figure 2.30 

 

 

Person(?p)^hasage(?p,?a)^swrlb: greaterthen(?a,18)  �sqwrl: select(?p, ?a)

  

     Figure 2.30 Example of SQWRL 

 
The query in Figure 2.30 find all the person (Person(?p)),whose age(hasage(?p, ?a)),  

is greater then 18 (greaterthen(?a,18)),and lists all the person and their age (sqwrl: 

select(?p, ?a)). 

 

2.9. SUMMARY OF VARIOUS ONTOLOGY TOOLS 

 
The summarization of various ontology tools used in various aspects of lifecycle of 

ontology has been given in Table 2.10 

   

 

 

 

 

 

 

 

 

 



 63 

Table 2.10 Summarization of various Ontology Tools  

 

 
Search engines for both the conventional web and the Semantic Web involve the same 

set of high-level tasks: discovering and revisiting online documents, processing user 

queries and ordering search results. The details diverge, due to the differences in the 

distribution of SWDs and the semantic of their content [124]. Existing approaches for 

the Semantic Search Engines has broadly the following features:   

• Ontology design is a time consuming and complex process, so design of 

such search engines enables the concept of ontology reuse by  finding the 

ontology for a particular domain 

• The documents are represented in highly structured languages hence allow   

the meaning based linkages among the documents. 

The existing search engines for example Google searches web documents, Semantic 

Search Engines like Swoogle searches OWL, RDF documents which are represented 

in highly structured languages whereas there is requirement of representing web pages 

to be with highly structured languages and allow the concepts to be associated to them 

and an information retrieval framework to be designed for searching such web pages. 

 

The next chapter discusses about the architecture of SemEngine. 

 

Tools  Examples 

Ontology Editor Tools 

 

 

1. Protege, 2.SWOOP 3. NeOn Toolkit 

4. Apollo 5. WebODE 6.OilEd 

7.OntoEdit 

8.Topraid Composer 9.OntoStudio 

Ontology Annotation Tools 1. Annotea 

Ontology Reasoning Tools 

 

1. Pellet 2. Jess 3. RacerPro 4. Fact++ 5. 

Kaon2 

Ontology learning tools  1. Protégé with OntoLT 2. ODEMapster 

Ontology evaluation tool 1. OntoAnalyzer 2. OntoClean 3. 

RaDON 

Ontology Storage Framework 1. Redland 2. Sesame 3. AllegroGraph 

4. Virtuoso 

Ontology merging and 

Alignment Tools 

1. Chimaera 2. PROMPT 



 64

   CHAPTER   III 

 

 

3. PROPOSED WORK FOR SEMENGINE:  SEARCH 

SYSTEM FOR ONTOLOGY 

 

 

3.1   INTRODUCTION 

 

Today’s web, where information is generally represented by unstructured languages, 

and interpretation\ identification of relevant information is left upon user to evaluate, 

is termed as syntactic web. Syntactic web refers to a web where computers do the 

presentation and people do linking and interpretations [87]. For the case of machines 

to understand the underlying concepts and produce precise and relevant results there 

is requirement to move from syntactic web to Semantic Web. Semantic Web is a 

vision proposed by Tim-Berner Lee, which defines the importance of web contents to 

be represented with knowledge based approach [10, 46]. Ontology is one of the 

knowledge based technique to represent web contents and web pages represented by 

such contents are called Semantic Web pages/documents. These web 

documents/pages are generally represented by Semantic Web languages like Resource 

Description Framework (RDF), Web Ontology Language (OWL), and Darpa Agent 

Markup Language (DAML). 

 

A search engine is an information retrieval system that provides relevant web 

information to the users but it is not possible to use current search engines for 

searching Semantic Web documents for the following mentioned reasons [125]: 

 

a) Current techniques do not allow to index and retrieve semantic tags 

b) They don’t use the meaning of tags 

c) Can’t display results in visual form 

d) Ontologies are not separated entities which usually have cross references that 

current engines don’t process.  

 

Thus, the movement from syntactic web to Semantic Web requires design of search 

engines which provide the results based on inference of the knowledge contained in 



 65

the web pages. The Semantic Web can be made a reality by gradually augmenting the 

existing data by annotations. Annotating the web contents with ontologies can be used 

as a solution to represent the knowledge on the web. Annotations can be either stored 

in the very same document, in an external repository, or they can be generated on the 

fly using lightweight human language technology [126]. 

 

The search engine in the traditional web follows three step processes: crawling, 

indexing, and searching. The proposed approach, following these basic steps, is 

different from the traditional model as it involves ontology annotated documents with 

crawling, indexing and concepts search on these documents. Traditional web search 

engines [9,127] have the limitation that web search results are based on keywords and 

not on concepts. Hence, various language issue like word sense disambiguation exists, 

for example   

 

• Homonyms (same words representing different concepts) e.g. the “jaguar” car 

vs. “jaguar” animal 

• Synonyms (different words representing the same concept) e.g. “car” and 

“automobile” represent the same concept and result set should include pages of 

both the concepts. 

 

In computer science, the process of mapping terms to concept-space is referred to as 

Word Sense Disambiguation (WSD) [128]. In general, there are two main approaches 

to WSD; supervised and unsupervised approaches [129]. Supervised approaches 

[129,130] uses machine-learning techniques that learn to classify senses from 

examples (i.e. training sets) whereas unsupervised approaches [129] do not depend on 

training sets but uses techniques to utilise the information provided in the applied 

corpus (e.g. word collocation, keywords and part-of-speech) which are called as 

knowledge based approaches using ontologies. Enriching documents with ontologies 

are a knowledge based approach with machine understandable mark-up that formally 

represents a universe of discourse by describing the relationships between its concepts 

[70,128].  

 

The problems of imprecise and irrelevant results continue to hinder web searchers, 

especially with the continued expansion of the web [131]. The example for such 



 66

imprecise results is as shown with the snapshots from Google search engine with 

query “Laptop Specification” in Figure 3.1. 

 
 

Figure 3.1 Google result for query “Laptop Specification” 

 

Figure 3.1 shows the results of Google for the specified query “Laptop Specification”, 

where user intention to find the result consisting of specifications of laptop yields a 

result set which either specifies a specific site from where laptop can be purchased or 

is more specific to a brand. Only five out of first ten result set consist of results which 

are relevant results, giving only 50% performance of searching.  

 

The approach followed in the research carried out can be described using a four step 

process:



 67

Step 1. Crawling of the web pages, filtering out the web pages which are not 

annotated with any ontology, 

Step 2. Indexing of the crawled annotated web pages, 

Step 3. Ranking of the ontology annotated web pages. 

Step 4. Searching of the web pages based on the concepts given in the query. 

 

The following Table (see Table 3.1) describes comparative analysis of various search 

engines, done based on the approaches used and their input and output result format: 

Table 3.1 Comparative analysis of Search Engines 

 
Search engine Approaches 

Used 

Output 

Result 

Format 

Input  Format Techniques Used 

Hakia [132] It is based on 

producing 

results based 

on searching 

of structured 

text like 

Wikipedia. 

HTML web 

pages  

Natural 

Language 

questions or 

phrases, 

keywords.  

Proprietary semantic 

technology called 

QDEXing(Query 

Detection and 

Extraction) 

DuckDuckGo[133] It produces 

results based 

on searching 

of Wikipedia, 

Wolform 

Alpha. 

Classified 

results with 

their HTML 

web pages 

giving the 

possible 

meaning for 

the query 

entered. 

Natural 

Language 

Clustered approach and 

NLP techniques  

Cognition[134] It produces 

results based 

on ontology 

and WordNet 

vocabulary.  

HTML link 

results 

Natural 

language 

phrases  

Uses 

- Linguistic technology 

-Boolean search 

-Fuzzy search  

 technologies  

 to produce result. 

SenseBot[135] Concept 

search 

Summarized 

results 

Query using 

keywords  

Uses text mining 

algorithms that parse 

the web pages to 

produce results.  

PowerSet[136] Based on 

giving results 

searching the 

contents of 

Wikipedia. 

HTML web 

pages  

Query using 

keywords, 

natural 

language 

questions or 

phrases  

Powerset semantic 

indexing is based on the 

XLE (Xerox Linguistic 

Environment), Natural 

Language Processing 

technology. 

Google[42] Based on 

giving results 

based on 

keywords 

present in 

pages. 

HTML web 

pages 

Natural 

Language 

PageRank Algorithm 



 68

Swoogle[112] Have ontology 

repository. 

Finds 

appropriate 

ontologies 

and list them 

in ranked 

order.  

Domain 

concepts 

-N gram based indexing  

-Ontology rank based 

on     PageRank 

Watson[137] Find 

ontologies by 

integrating the 

search 

capabilities. 

Ontology 

Listing 

Domain 

Concepts 

 

-Watson Semantic 

gateway 

-NeOn Toolkit 

Falcon[116] Concept 

search 

Produces 

Ontology 

listing and 

generates 

query 

relevant 

structured 

snippets.  

Keywords    -Popularity based 

approach for ranking 

of concepts and 

ontologies 

 

 

Table 3.1 shows the comparative analysis of various search engines done on the basis 

of approaches used, output result format and input format used by these search 

engines. Most of the search engine described above search on the basis of keyword 

matching like Google, whereas some of them are called as semantic search engines 

but are generally used for finding ontology which can be reused for a particular 

domain. The examples of such search engines are Swoogle [112], Watson [137], 

Falcon [116] etc.  

 

This chapter describes the proposed framework of “SemEngine: Search System For 

Ontology”, for searching ontology annotated documents describing the methodology 

followed for developing the system depicting the functional diagram of the developed 

system, and describing the implementation and the experiments done for evaluation. 

The technique followed by SemEngine is compared with various search engines on 

different parameters shows that proposed SemEngine is both efficient and scalable. 

 

3.2   PROPOSED FRAMEWORK FOR SEMENGINE: “SEARCH SYSTEM 

FOR ONTOLOGY” 

 

The proposed SemEngine’s functionality includes 

 

• Deploying the strategy for crawling the ontology annotated web pages, 

• Indexing  ontology annotated web pages,  



 69

• Ranking the web pages associated with ontology in order of their relevancy with 

SemRank algorithm,  

• Searching the query against matching ontology annotated web pages giving a 

ranked set of web page results. 

 

The architecture of the SemEngine has been proposed that uses a novel technique to 

search ontology annotated web pages. The proposed architecture consists of the 

following functional components: 

 

1. Ontology Development Framework 

2. SemCrawl Module 

3. SemIndex Module  

4. SemRank Module 

5. Query Interface Module 

6. Search Module 

 

Each component of proposed SemEngine has been discussed in brief in this chapter 

and details of each component with implementation are discussed in next chapters. 

The description of each module of proposed SemEngine with their proposed 

algorithm is described below:  

 

3.2.1 Ontology Development Framework 

Large numbers of development frameworks are available for Ontology Engineering 

like Protégé [61, 62], OntoStudio [138], SWOOP [99]. Among these Protégé is most 

widely used by researchers, which is developed by Stanford University and is an open 

source tool. In Protégé concepts, properties like data properties and properties 

between concepts can be easily modelled. The consistency of the developed concepts 

can be checked by different reasoners available, different plug-ins reasoners available 

for Protégé framework are Pellet [101], Jess [139]. Query retrieval can be done in 

Protégé framework using DL (Description Logic) Query [140], rule languages can 

also be used with Protégé development framework like SWRL (Semantic Web Rule 

Language) [107]. 

The proposed architecture is described in Figure 3.2. 

 



 70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2   Proposed Architecture for Search System for Ontology Annotated Web 

Documents 

 

 
Ontology 

Development 

Framework 

Ontology Repository 

              

                   

         
      fetched pages  

         

         

                                                                                             

         

         

         

         

         

         

         

    

Fetch Module 

Indexer Module 

Ontology Extractor 

Module 

SemRank Module 

Search module 

Protégé 

OntoEdit 

OilEd 

Web pages 

Repository 

Filter Module 

Parser Module 

Quad 

Store RDF Onto_HTML  Index 

Query Interface Module 

User 

(a): ontology 

(b) : web pages 

(c) : fetched contenets 

(d) : filtered sementic contenets 

(e ): parsed sementic contents 

(f) & (g) : ontology 

(h) : web pages 

(i) & (k) : < S, P,O> ontology 

( j) & (l) : HTML file , ontology 

(m) : ranked results 

(n) : results 

(p) & (q) : query 

(o) & (r ) : ranked results 

 

 (n) 

SemCrawl Module 

SemIndex Module 

Crawled 

Ontology     

 (h) 

( b) 

 (d) 

 (c) 

 (a) 

 (g)  (f) 
 (e) 

 (m) 

 (j) 
 (i) 

(p)  (o) 

 (l) 
 (k) 

 (r)  (q) 



 71

In the current research, Protégé development framework has been used for 

development of ontologies in laptop domain. The three ontologies have been 

developed in laptop domain i.e Laptop_Specification, Laptop_Seller and Laptop_ 

Review ontology consisting of specific concepts and properties related to it. The 

ontologies have been developed using Protégé tool. Fact++ Reasoner [141] has been 

used to check the consistency of the concepts used. DL Query has been used for 

validation and of concepts related to ontology [142]. 

The details of this module have been given in Ontology Development in the Domain 

of Laptop (Chapter 4). 

 

3.2.2 SemCrawl Module 

This is an important module that crawl the web pages, domain ontologies that are 

used for annotation of web page, extracts the semantic contents described in various 

semantic web languages. These crawled web pages are then further filtered and 

parsed. The output of the SemCrawl Module is given as input to SemIndex module. 

 

This proposed SemCrawl module [48] is mainly responsible for crawling of the web 

pages annotated with domain ontologies from Web Page Repository and the 

associated ontology from Ontology Repository. The web pages which are 

semantically annotated are given to indexing module whereas the pages without 

annotation will be filtered out. The crawled semantic ontology is parsed by the Parser 

Module where each statement is parsed into <S, P, O> where S represents subject, P 

represents predicate and O represents object. The output of SemCrawl Module are the 

filtered annotated web pages which are parsed as <Subject, Predicate, Object > and 

are given as input to the SemIndex Module for further indexing purpose.  

 

Fetch Module upon receiving the contentempty signal from the Filter Module, extracts 

URI from URI Queue and fetches the contents from the web based on URI link 

received. Upon receiving the contents from the web, it stores the contents in the 

semantic buffer and signals contentready signal to the Filter Module signalling, the 

availability of the contents. 

The algorithm for modules of SemCrawl Module is summarized in Figure 3.3. 



 72

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3   Pseudo code for SemCrawl Module 

Filter Module upon receiving the contentready signal from the Fetch Module, inputs 

the contents from semantic buffer and filter the web pages associated with ontology 

and send the filtered web contents for further extraction of link from the contents, and 

send the signal contentempty to Fetch Module for further fetching of contents. 

 

Algorithm SemCrawl ( ) 

{ 

Fetch Module ( ); 

Filter Module ( ); 

Parser Module ( ); 

} 

Fetch Module 

{ 

wait (contentempty); 

extract URI from the URI Queue ; 

fetch the contents from corresponding URI; 

store the contents in semantic buffer; 

signal (contentready); 

} 

Filter Module  

{ 

Wait (contentready); 

get  the contents from buffer; 

extract the semantic  web pages; 

send the filtered contents for parsing; 

signal (contentempty); 

} 

Parser Module 

{ 

extract the crawled ontology; 

  extract subject, predicate and object; 

store triples in database with three columns subject, predicate,         

object<S,P,O>; 

} 

 



 73

Parser Module receives the crawled contents from semantic repository and extracts 

subject, predicate and object from crawler output repositories and stores those triples 

in database.  

The output of SemCrawl Module; crawled semantic web pages and ontologies are 

given as input to the SemIndex Module.   

The details of this module have been discussed in SemCrawl: A Framework for 

Crawling Ontology Annotated Web Documents (Chapter 5). 

3.2.3 SemIndex Module 

The SemIndex Module [143] creates the indexes for crawled web contents for 

efficient retrieval. The Indexer Module creates one of the indexes; <Subject, 

Predicate, Object, Ontology> example of the index is depicted in Table 3.2. The other 

index is created by Onto_HTML Mapping Module; <HTML, Ontology>. The two 

indexes created by SemIndex Module are  

• <Subject, Predicate, Object, Ontology>, 

• <HTML, Ontology> 

 

The example of <Subject, Predicate, Object, Ontology> index is depicted in Table 

3.2. 

                     Table 3.2 Index of <Subject, Predicate, Object, Ontology> 

 

This example in Table 3.2 shows that RAM_4G is a type of Laptop_Memory and this 

is associated with ontology Laptop_Specification ontology. Other index generated by 

index module is <HTML, Ontology>. The example of <HTML file, Ontology> is 

depicted in Table 3.3.         

                          

 

 

 

Subject Predicate Object Ontology 

RAM_4G Type-of Laptop_Memory Laptop_specification Ontology 



 74

HTML File    : E:\projects\RDF\Final\crawled-data\filtered-web-

content\snapdeal.htm 

Ontology  : laptop-seller-ontology 

 

Table 3.3 Index of <HTML file, Ontology> 

 

A snapshot of the Onto_HTML Mapping Database Module is depicted in Figure 

3.4.

 

  Figure 3.4 Parsing of results to <HTML, Ontology> 

The example shown in Figure 3.4 indicates one of the example of <HTML File, 

Ontology > mapping index of Onto_HTML Mapping Database Module.  

  

 

Figure 3.5    Ontology and the web page associated with that ontology 

HTML File  Ontology 

E:\projects\RDF\Final\crawled-data\filtered-web-

content\RAM_Specs.htm 

Laptop_specification 

Ontology 



 75

The example in Figure 3.5 shows that HTML web page from www.snapdeal.com 

website giving information about laptop price is associated with Laptop_Seller 

ontology. 

The algorithm for SemIndex Module is depicted in Figure 3.6. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Algorithm for SemIndex Module 

Indexer Module reads ontology file from Ontology Repository and parses ontology 

into triples and insert those triples and ontology value to database. The other module 

OntoHTML Mapping Module reads RDF files from repository and creates index of 

<HTML File, Ontology> onto the database. 

Algorithm SemIndex  Module ( ) 

 { 

While (empty (repository)) do 

{ 

Indexer ( ); 

Ontology Extractor ( ); 

} 

} 

Algorithm Indexer Module(input: parsed output, output: index) 

 { 

read ontology file from the crawled  ontology  repository; 

parse ontology file ; 

extract RDF triples; 

insert subject, predicate, object ,ontology value to quad store RDF index; 

}  

 

Algorithm Ontology Extractor (input: web pages, output: index) 

 { 

parse web pages from Web Page Repository; 

parse ontology from crawled ontology repository; 

extract the ontology name and associated HTML web page;  

index (HTML File, Ontology) in the database; 

} 



 76

Details of this module have been discussed in detail in SemIndex: Efficient Indexing 

Mechanism for Ontologies (Chapter 6). 

3.2.4 RankEngine Module 

The ranking module first selects the ontologies that are matched by the query entered 

by user, then it ranks all the pages that are annotated by selected ontology. The 

proposed algorithm consists of a hybrid approach having two dimensions of ranking; 

ranking metrics for selecting ontology and metrics for ranking web pages associated 

with the selected ontology using traditional metrics. 

a) First dimension of ranking metrics for selecting ontology 

 

For selecting ontology the measure, Match_Measure is given as specified in equation 

7.1 as 

 

 

               (7.1)      

where 

 

 i= number of ontologies ranging from 1 to n  

f (R) = function of Relatedness 

α , β  = parameters where α + β =1 & α ≤  1;  β  ≤  1 

Concept_Weight_Measure is given as specified in equation 7.2 as  

 

            ∑
=

=
n

i

MfMeasureWeightConcept
1

)Cn,(__                  (7.2) 

  

where  

 

n refers to number of concept in query 

 

f(M, Cn) = function which  gives value 1 if ontology contains a exact class label 

matching Cn and 0 if ontology does not contain a class label matching Cn. 

 

b) Second dimension of ranking metrics 

After selecting the ontology that has the maximum Match_Measure, the web pages 

associated with the selected ontology are ranked based on Rank_Score  metrics for a 

query as defined in equation 7.5 as  

(_.([) 
≤≤ 



 77

       Rank-score= α TextFreq(c, q) + β (Linkweight)    (7.5) 

    

Where 

TextFreq(c, q) = frequency of the concept similar to the query in web page.  

Linkweight  PR (A) = weight measure of links from a web page given a document A. 

1=+ βα  ; α ≤1 and β ≤1; 

These above mentioned measures are used to find the web pages that match those 

concepts defined in the query with the web page. The details of this module have been 

discussed in SemRank: A Novel Hybrid Approach for Ranking Ontology 

Annotated Web Documents (Chapter 7). 

3.2.5 Query Interface Module 

The Query Interface Module consist of an interface so that query can be fired by the 

user for search. The query is processed as set of concepts. For the query “Laptop 

Specification RAM” the concepts are as described in Figure 3.7. 

                                              

 

 

                Concept              Concept   

     

Figure 3.7 Concept matching of Query 

Figure 3.7 shows the matching of the concepts, where the concepts “RAM” and 

“laptop specification” will be searched in the index for retrieval of results. 

 

3.2.6 Search Module  

The Search Module checks for the concepts associated in ontology, and matches on 

the basis of concepts contained in the ontology; the result is a set of URLs which are 

associated with those particular concepts. The algorithm for Search Module is 

described in Figure 3.8. 

 

 

 

 

Laptop specification     RAM 



 78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8   Pseudo code for Search Module 

 

The input for Search Module is HTML Mapping Index and output is the list of URLs, 

the search term is given as input through query interface, if search term is contained in 

ontology then until URLs are listed, all the corresponding web pages to that ontology 

are listed. 

 

3.3   METHODOLOGY OF THE DEVELPOED SYSTEM 

 
The step wise details of the implementation carried out to achieve the proposed 

research objectives have been depicted in Figure 3.10. 

Step 1: Development of Ontology in a particular domain 

In the first step three ontologies were developed in the domain of laptop. For the 

present research Protégé software tool is used for ontology development which is an 

open source tool. An overview of the developed ontologies is depicted in Figure 3.9. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Three ontologies developed in Laptop domain 

     Algorithm Search Module (input: search term, output: ranked result) 

{ 

Input (search term) 

If search term(concept in ontology)then 

While (all urls are listed) do 

{ 

List the corresponding web page to that ontology; 

} 

} 

Laptop Domain 

Laptop_Review 

Ontology 

Laptop_Seller 

Ontology 

Laptop_Specification 

Ontology 



 79

 

   Step 1 

 

Step 2 

 

 

Step 3 

 

Step 4 

   

Step 5 

 

Step 6 

 

 

 

 

Output 

 

 

         Step 7 

 

 

 

 

 

 Step 8 

    No                                       Yes 

 

 

 

 

Figure 3.10 Methodology of developed system 

Annotation of web pages with 

particular domain ontology 

Development of SemCrawl 

Module 

Development of SemIndex 

Module 

Development of SemRank   

Module 

Development of SemEngine 

Module 

Output1 Output2 obtained from conventional 

mechanism 

Compare output1 

and output2 

Analyzed Results 

Check if the 

desired 

objectives are 

met or not 

Go for possible 

future work 

extensions 

Loop back 

 Development of ontologies in 

the domain of laptop  



 80

 

The description of ontological framework shown in Figure 3.9 is as follows: 

 

1. Laptop_Review Ontology 

This ontology deals with the reviews relating to laptop. It covers the concepts like 

feedback, rating, reviews and other such concepts.  

 

2. Laptop_Seller ontology 

This ontology deals with selling sites of laptop. It covers the details like 

laptop_delivery_time, laptop_develivery_charges, laptop_payment_methods, 

laptop_availability, laptop_price and generalization to these concepts.  

 

3. Laptop_Specification ontology 

This ontology deals with specification concepts of laptop. It covers the concepts like 

laptop_os, laptop_memory, laptop_display_size, laptop_dimension_specs and more 

generalization to these concepts. The subclass for the concepts and instances for 

concepts are defined for example for laptop_dimension the subclass is laptop_height 

and laptop_width. 

 

Step 2: Annotation of web pages with particular ontology 

The web pages covering a particular scope is annotated with one of these developed 

ontologies. For example web page http://www.blog.laptopmag.com/laptop-buying-

guide.htm is annotated with ontology which covers the scope of this web page with 

Laptop_ Specification Ontology. 

 

Step 3: Development of SemCrawl Module  

The SemCrawl Module fetches the web pages and filters the semantic web contents 

for further processing, and parses the contents into triples <S, P, O>. This module has 

the feature of extracting heterogeneous documents from the web which can then be 

indexed. This will help in the semantic retrieval of the information.  

 

Step 4: Development of SemIndex Module 

The SemIndex module indexes the web pages annotated with ontologies. The module 

indexes the parsed triples into 2 indexes 

1. <S, P, O, ontology> 



 81

2. <Ontology, html file> 

In the index <S, P, O, ontology>  S stands for the Subject, P stands for Predicate and 

O stands for Object and ontology stands for the particular ontology associated with 

the web page. 

 

Step 5: Development of SemRank Module 

This module initially selects the required ontology and then list the web pages 

annotated with that ontology. The module works on two dimensions-firstly searching 

for an appropriate ontology and secondly ranking the web pages associated with that 

ontology. The output of this module is the ranking of the web pages as per the Rank-

measure and Concept-Measure. 

 

Step 6: Development of SemEngine Module 

The SemEngine module checks for the concepts associated in ontology, and matches 

on the basis of concepts involved in the ontology; the output will be a set of URLs 

associated with those concepts. It includes a user interface which allows the user to 

enter the user query which will match the concepts in the index and lists all the web 

pages related to those concepts. 

 

Step 7: Compare output1 and output2 

Comparison of output obtained from SemEngine module is done with output obtained 

from conventional search engines and the results are analyzed for the input queries. 

 

Step 8: Check if the desired objectives are met 

 The results of the developed system is compared with conventional system, if the 

objectives are met, the possible future extensions of the work can be carried out 

otherwise the system need to be redeveloped with different perspectives. 

 

3.4 FUNCTIONAL DIAGRAM OF THE PROPOSED SYSTEM 

 

The functional architecture of the proposed system as two phase diagram is given in 

Figure 3.11. 

 



 82

 
 

Figure 3.11 Functional Diagram of the developed system 

 

Figure 3.11 depicts the two phase development of the system where Phase I is query 

independent phase and Phase II depicts query dependent phase. The query dependent 

phase includes the searching and matching of the concepts in the query with the 

developed index and ranking those pages in the decreasing order of their relevancy.  

Query independent phase includes the development of ontology using Protégé 

development tool, crawling those annotated documents and maintaining an index of 

the crawled corpus. 

 

In this chapter, the proposed framework SemEngine has been discussed. This chapter 

discusses architecture of searching unstructured web pages which are annotated with 

the knowledge representation techniques called ontologies. The ontologies are well 

represented with Semantic Web languages RDF, OWL which can be created using 

various open source and commercial tools like Protégé, Altova Semantic Works. The 

annotation of web pages with ontologies helps machine to understand the semantics of 

the information represented and henceforth results into a more accurate retrieval of 

results for a query. The implementation of the proposed approach in the forthcoming 

chapters indicates that web information can be represented well with ontologies 

leading to better information retrieval. The research carried out envisions an approach 

of manually annotating web pages, which can be extended in future to create 

automatic annotation approaches to annotate the web pages which can be then 

crawled, indexed, searched and ranked using SemEngine architecture discussed in this 

research. 

 



 83 

CHAPTER IV 
 
 

4. ONTOLOGY DEVELOPMENT IN THE DOMAIN OF 
LAPTOP 
 
 

Ontologies are the most important tool in knowledge representation, as they allow to 

logically relating large amount of data [144]. Ontology in general defines a common 

vocabulary to share information in a domain. The definition of ontology is as “An 

Ontology is a formal explicit specification of a shared conceptualization” [70, 71, 72]. 

Here, ‘Formal’ refers to ontology being machine-readable. ‘Explicit’ refers to the 

types of concepts, relationships between those concepts and constraints being 

explicitly defined. ‘Shared’ refers to the concept that knowledge contained in 

ontology is consensual and has been accepted by a group of people. 

‘Conceptualization’ refers to an abstract model of phenomenon in the real world 

where the relevant concepts of that phenomenon has been identified.  

 

The reasons identified for developing ontology are [75]: 

 

1. To share common understanding of the structure of information among people or 

software agents. 

2.  To enable reuse of domain knowledge. 

3.  To make domain assumptions explicit. 

4.  To separate domain knowledge from operational knowledge.  

5.  To analyze the knowledge. 

 

Ontology is generally specified  using concepts called as classes, properties (slots) of 

concepts specified using object properties and data properties, individuals specified 

using instances of a class, and restriction on properties(facets) using slot cardinality, 

domain and range of a slot. Object properties exist between different classes and 

instances. Data properties exist between a class or instance and a data value.  

 
4.1 ONTOLOGY DEVELOPMENT PROCESS 
 
The process of Ontology development is not a linear process rather it is an iterative 

process which requires the revision and refinement of concepts for the evolving 



 84 

ontology. Consider the development of University ontology that explains each step 

depicting the ontology lifecycle [10, 75]. 

1. Determine the Domain and Scope of Ontology 
 
The first step in the development of ontology involves determining the domain and 

scope of ontology. The various things to be kept in mind while designing ontology 

under this step are as follows: 

 

1. Domain where the ontology design is to be applied 

2. Application of the ontology 

3. The characteristics of an ontology   

4. Type of application the ontology can be applied to 

5. The type of questions the ontology should be able to answer 

6. User of ontology and maintenance of ontology 

7. Languages to be  used which will be appropriately mapped to the intended 

application 

 

For example, while designing ontology for University,  

 

(i).   Domain is “University”  

 

(ii). Scope covered is “Academic Teaching”.  This ontology design describes the 

entities in academic domain of a University. Ontology scope refers to defining  

• relation between student and the courses that student is pursuing,  

• faculty teaching a particular course, 

• courses in each department.  

 
2.  Considering the Reuse of Existing Ontology 
 

Developing ontology from scratch is considered as a very difficult, time consuming 

process and requires a lot of domain knowledge, so it is always advisable to reuse an 

already existing ontology and extend with own concepts to meet one’s requirement.  

 

The following things must be kept in mind while considering the reuse of ontology: 

 

1.  Applications which can use the developed ontology for consideration of reuse, 

 

 



 85 

2.  Library from where ontology can also be reused rather than starting from scratch 

e.g. DAML Library [75,145], Ontolingua Library [75,146] has a large collection 

of ontologies. 

 

For current research, there was no existing ontology in the domain of laptop that is 

meeting the specified requirement; therefore, the ontologies have been designed from 

scratch for the proposed research work. 

 

3. Enumerate the Important Terms in the Ontology  
 

This step involve finding out all the important terms that are expected to appear in 

ontology design. Generally nouns are considered as classes names and verbs form the 

property names. For example, while designing ontology for University the important 

terms are 

• University 

• Faculty 

• Assistant professor 

• Associate professor 

• Professor 

• Student 

• Course 

• Technology 

• Computer Engineering 

  

4. Define the Class and the Class Hierarchy 
 
The different approaches for developing Class Hierarchy are [75]: 

 

1. Top-Down- In this approach the development starts with the most general 

concepts in domain and subsequent specializations of concepts. 

2. Bottom-up- This approach starts with most specific classes and then grouping 

of theses specific classes into more general concepts.  

3. Combined Approach- This approach is combination of both the approaches 

and starts with the defining of more salient concepts and then generalizes and 

specialize them appropriately.   

 



 86 

The different steps followed for developing University Ontology are - 

 

1. Define the classes of University Ontology. Classes for University domain are 

University, Department, Student, Course, Faculty etc.  

2. Define the hierarchy of the classes i.e. defining classes and subclasses of ontology 

design. The Class Hierarchy for University Ontology is depicted in Figure 4.1. 

 

 
 

Figure 4.1 Class Hierarchy for University Ontology 

 

Figure 4.1 shows Class Hierarchy where University is a super class and has 

Department, Course, Student and Faculty as subclass. Department is further classified 

into Technology and Science. Faculty is further classified into Professor, Associate 

Professor and Assistant Professor. This way of organizing classes into hierarchical 

taxonomy is called Class Hierarchy. 

 

 5. Define the Properties of Class-Slots 
 

In this step, the properties that exist between different class i.e data properties define 

the relation between a class and value of a class and object properties which define 

the relation between two classes has been defined. 

 

For example, for University Ontology properties can be defined as: 

 



 87 

(i). Object Property -The different object properties that exists between classes has 

been defined as : 

 

• isTaughtby     

 

The property isTaughtby exist between two classes i.e Course  and Faculty.  

 

• teaches 

The property teaches exist between two classes i.e Faculty and Course. 

 

• isEnrolledIn 

The property isenrolledIn exist between two classes i.e Student and Department. 

 

• hasSupervisor  

The property hasSupervisor exist between two classes i.e Student and Faculty. 

 

(ii). Data Property- The properties that exist between different class, instance and 

data value are defined as: 

• hasName 

The property hasName exist between a class or instance and data value i.e class 

Student and name value of datatype string.  

For example, Student hasName Pulkit 

 

• hasAge 

The property hasAge exist between a class or instance and data value i.e. class Student 

and value of datatype numeric. 

For example, Akriti hasAge 32. 

 

6. Define the Facets of the Slots 
 
Slots have different facets which are mentioned by defining  

 

1. Slot cardinality-It defines the number of value a slot can have. A slot can have 

single cardinality which means having at most one value and multiple 

cardinality means having any number of values. For example, student can 

belong to one department at a time so object property isStudentof   is a single 

cardinality relation that exists between Student and Department.    

 



 88 

2. Slot-value type-It defines the value a slot can take. It can be of different data 

types string, number, Boolean, enumerated data type e.g value of age is 

numeric. 

3. Domain of slots-It refers to defining the domain and range of a slot.  

  

Therefore, for the defined properties, domain and range of slots are defined in Table 

4.1.   

   Table 4.1 Domain and Range of Slots  

 

 

 

 

 

 

 

   

 

 

 

Table 4.1 depicts the domain and range of slots. For the object property isTaughtby, 

the domain is Course and range is Faculty i.e.  Course isTaughtby Faculty, example 

Mathematics isTaughtby Nillima. 

 

7. Create instances 
 
The last step is creating instances of classes in the Class Hierarchy [75]. Instances 

refer to creating individuals for classes defined for ontology. The instances for the 

defined class in University Ontology have been shown below: 

 

Table 4.2 Instances for University Ontology 

 

Property Domain Range 

isTaughtby Course Faculty 

 

teaches Faculty Course      

isEnrolledIn

  

Student Course 

hasSupervisor Student Faculty 

 

isStudentof Student Department 

Class Instances 

Course Mathematics, Business, Communication, Semantic Web, 

English, Business Intelligence, Parallel and Distributed 

Computing 

Student 
 

Akriti, Manisha, Pulkit, Naina 

Faculty Nillima, Sujata, Deepali, Saira 

 



 89 

Table 4.2 depicts the instances created for various classes in University ontology. For 

example, for class Course the instances defined are Mathematics, Business, 

Communication etc.  

 

These seven basic steps explain the development of Ontology taking domain of 

University with very few concepts considered for explanation. 

 
4.2. ONTOLOGY DEVELOPMENT FOR SEMENGINE IN PROTÉGÉ  
 

4.2.1 Problem Scenario 
 

When a user wants to search for information on the specified query “laptop price 

range 20000 to 30000”,  it includes the results for review and the particular brand 

rather than the intent of the user to find all the laptops that are in range between 20000 

to 30000. This makes the user to filter out the required contents consuming a lot of 

effort and time. The specified query is depicted in Figure 4.2. 

 

 
 

Figure 4.2 Google result for Query “laptop price range 20000 to 300000” 



 90 

Figure 4.2  shows the Google results for the specified query “laptop price range 20000 

to 30000”, which  includes the results for review and the particular brand rather than 

the intent of the user to find all the laptops that are in range between 20000 to 30000. 

The performance for the result is 50% for ten results. The result shows the sites giving 

imprecise results for a query. 

 

Consider the performance for ten web pages for the described query. The analysis of 

results is as depicted in Table 4.3.  

 

Table 4.3 Performance Rates for different Search Queries 

 

 
 
 
 
 
 
It has been found that whatever query the user fire on laptop, most result sets 

contained the links to the selling sites of the laptop. Therefore laptop domain has been 

classified into three categories- 

 

•   Laptop Specification 

•   Laptop Selling 

•   Laptop Reviews  

 
To avoid the above said problem, ontologies has been developed for these domains 

and use of these ontologies is extended for further annotation in research. This chapter 

deals with the development of ontologies in three categories and checking the 

consistency of ontology, and running DL (Description Logic) queries on the ontology 

to check the converge of ontology according to the set of query. For the research 

purpose, three ontologies have been designed in the domain of laptop to support the 

research work which is utilized for information extraction. For the development of 

ontology, an iterative development process as discussed earlier in the ontology 

engineering phase has been followed. 

 
4.2.2 Ontology Development  
 

The Ontologies developed for research purpose in the laptop domain are : 

 

Search Query Performance 
Laptop specification 60% 

Laptop Purchase 80% 

Laptop Ratings 30% 

Laptop feedback 40% 



 91 

I. Ontology for Laptop_Review  

II.  Ontology for Laptop_Specification  

III. Ontology for Laptop_Seller 

 
I. Ontology for Laptop Review 

 

This ontology deals with the reviews of laptop and has concepts related to review like 

rating, feedback and the various instances related to review sites are covered. 

 

 
 

Figure 4.3 OntoVisualizer Result of Laptop_Review Ontology 

 

Figure 4.3 shows the OntoGraph Vizualizer of Laptop_Review Ontology. In this 

Ontology the classes reviews, feedback and rating and the instances such as NDTV 

TechnoWorld, Times Magazine and GadgetGreek were developed which gives the 

reviews on the laptop. The different classes for the Laptop_Review Ontology are as 

depicted in Table 4.4.    

Table 4.4 Classes for Laptop_Review Ontology 

 

   

    

 

 

 

Class 

Laptop_Advisors 

Rating 

Feedback 

Reviews 



 92 

 

 

     

Figure 4.4 Laptop_Review Ontology Class. 

Figure 4.4 depicts the classes of Laptop_Review Ontology created in Protégé. The 

instances of laptop_Review is depicted in Table  4.5  

Table 4.5 Instances for Laptop_Review 

 

 

 

 

 

Table 4.5 shows the instances for the Laptop_Advisor class of Laptop_Review 

Ontology .  

 

II. Laptop_Specification ontology  
 

Ontology for Laptop_Specification developed in Protégé contains the concepts related 

to the specification of laptop for example laptop brand, laptop camera, laptop 

dimensions which are specified as classes. The different classes and subclasses for 

described for Laptop_Specification Ontology (see Table 4.6). 

   

Class Instances  

Laptop_Advisor NDTVTechnoWorld 

TimesMagazine 

GadgetGeek 



 93 

Table 4.6 Classes and SubClass of Laptop_Specification Ontology 

 

The above table 4.6 specifies classes and subclasses of Laptop_Specification ontology 

and Table 4.7 depicts instances for ontology Laptop_Specification Ontology.  

Table 4.7 Instances for Laptop_Specification Ontology 

 

 

 

 

 

 

 

 

Class SubClass 

Laptop_Audio Microphone 

 SteroSpeakers 

Laptop_Brand NIL 

Laptop-Camera NIL 

Laptop_Dimensions Laptop_Height 

Laptop_Width 

Laptop_Display_Size 

 

Display_13inch 

Display_14inch 

Display_17inch 

Laptop_Memory RAM 

ROM 

RAM RAM_4G 

RAM_8G 

Laptop_OS OS_Linux 

OS_Windows 

Laptop_Processor Processor_IntelCore_I3 

Processor_IntelCore_I5 

Processor_IntelCore_I7 

Laptop_Wireless Laptop_Bluetooth, Laptop_Wifi 

Class Instance 

Laptop_Brand Dell, Compaq, HP, Sony, 

Apple 

Display_13inch Dell 

Display_14inch Compaq 

Display_17inch Sony, Apple 

OS_Windows Windows 98,Windows XP 



 94 

Table 4.7 depicts for instances for different classes of Laptop_Specification Ontology. 

For example OS_Windows class has Windows 98, Windows XP as the instances. 

 
 

Figure 4.5 Laptop_Specification Ontology 

 

Figure 4.5 shows the Laptop_Specification Ontology in which the concepts related to 

laptop like storage, dimensions, memory, wireless features, camera, brand, OS, 

display size are covered and the different object and data property relations between 

these classes and instances used were defined for these classes. The classes used in 



 95 

this ontology are as depicted in Figure 4.5. The Ontovisualizer result of the ontology 

developed in Protégé is depicted in Figure 4.6. 

 

 
 

Figure 4.6 Ontovisualizer result of Laptop_Specification Ontology 

 

 

 

III.  Ontology for Laptop_Seller 
 

The ontology for Laptop_Seller covers concepts related to the selling sites. It covers 

the concepts like laptop availability, laptop price, laptop delivery charges, laptop 

payment mode, and different laptop selling sites. The instances are defined for 

different laptop selling sites. 

 

 

 

 

 



 96 

 
 

Figure 4.7 Laptop_Seller Ontology 

 

Figure 4.7 Shows the development of Laptop_Seller ontology which covers the 

concepts related to selling of Ontologies and the individual instances covered in this 

ontology are Flipkart, ShopClues. The ontovisualizer result of Laptop_Seller ontology 

is depicted in Figure 4.8. Table 4.8 depicts the classes and subclasses of 

Laptop_Seller ontology .  

 Table 4.8 Classes and Subclasses of Laptop_Seller ontology 

 

Class Subclass 
Laptop_Availability NIL 

Laptop_Deleviry_Charges NIL 

Laptop_deleviry_Time NIL 
Laptop_Guarantee NIL 

Laptop_Payment_Mode Laptop_Payment-CC 

Laptop-Payment_COD 

Laptop_Payment_EMI 

Laptop_Price NIL 



 97 

  

 
 

  Figure 4.8 Ontovisualizer result of Laptop_Seller Ontology  

 

Figure 4.8 shows the Ontovisualizer result of Laptop_Seller Ontology in Protégé. The 

developed ontologies are validated for correctness and can be queried using various 

query languages.  

 

4.2.3 Query Retrieval in Ontology 
 
In order to validate and verify the correctness of developed ontology, various query 

languages and rules languages can be used. The different query and rule languages   

for accessing ontology are  

• DL Query [140] 

• SPARQL Query [119] 

• SWRL Rules[107]  

• RDQL[121] 

DL Query tab provides a powerful and easy-to-use feature for searching a classified 

ontology. It is a standard Protégé 4 plug-in, available both as a tab and also as a view 

widget that can be positioned into any other tab. The query language (class 

expression) supported by the plug-in is based on the Manchester OWL syntax[147], a 

user-friendly syntax for OWL-DL that is fundamentally based on collecting all 



 98 

information about a particular class, property, or individual into a single construct, 

called a frame. DL Queries works only when the ontology is consistent, hence all the 

designed ontologies has been checked for consistency and found to be consistent 

using FACT++ reasoner [141]. 

 

In order to verify and validate the ontology in regard to different competency 

questions, Description Logic (DL) was used. The set of queries and DL Query format 

designed for the ontology developed in the domain of laptop has been indicated in 

Table 4.9.  

 

Table 4.9 Set of queries to be executed in the domain of laptop using three ontologies. 

 

The query mentioned in Table 4.9 has been executed with the set of these questions 

on defined ontologies in the laptop domain. One of the results of DL query executed 

on developed ontology is depicted in Figure 4.9.  

 

 

 

 

Query  DL Query  Ontology used  

Laptop with 

Display 13 Inches 

Laptop and hasDisplay 13 inches Laptop_Specification 

Laptop with 

processor intel I3 

Laptop and hasProcessor value “ 

I3”^^string 

Laptop_Specification 

Storage capacity 

more than 1 TB 

Laptop and hasstoragecapacity 

value “1TB”^^string 

Laptop_Specification 

Laptop with Price 

Range 30,000 to 

40,000 

Laptop_Price and hasrange30000 

to 40000 

Laptop_Seller 

Costs less than 

40,000 

Laptop_Price  and  

lessthan40000 

Laptop_Seller 

Payment Modes 

for Laptop 

Purchase 

Laptop and haspaymentmode 

credit 

Laptop_Seller 

Laptop with Good 

rating  

Laptop and hasrating “ 

A”^^string 

Laptop_Review 



 99 

Figure 4.9 shows the result of execution of query for Laptop_Specification Ontology. 

 

Figure 4.9 Execution of Query for Laptop_Specification Ontology 

 

 For the query “Laptop_Display_Size” depicts all the subclasses of the Laptop-

Display_Size as shown in Figure 4.9. The correct result of DL query indicates that the 

ontology has been well designed and returns the results for individuals and classes.   

 
Building domain ontologies is not a simple task as it requires a lot of effort and time 

to invest in domain conceptualization. Three ontologies were designed in the domain 

of laptop for ontology development and for checking the coverage of the concepts, set 

of queries were generated and implemented with the help of Description Logic. In 

next chapters, the developed ontology is used for annotation has been discussed in 

detail. The next chapter discusses about proposed SemCrawl framework. 

 

  

 
 

 



100 

 

CHAPTER V 
 

 

 

5. SEMCRAWL: A FRAMEWORK FOR CRAWLING 

ONTOLOGY ANNOTATED WEB DOCUMENTS 

 

 

5.1 INTRODUCTION 

 

With the current feature of the web where everybody can publish its own content, 

there is large amount of data availability on the web, leading to unstructured 

information and a lot of data volume. This problem poses difficulties in relevant 

information retrieval, where large amount of information is presented to the user but 

user has to navigate through a large result set and find relevant information. Hence, 

there is a need for structured information on the web, which represent a well-defined 

meaning of the contents so that contents presented to the user have meaningful based 

matching of the query rather than results based on keyword matching of the query. 

 

This problem has raised the need for semantic information representation over the 

WWW. There are different languages for semantic knowledge representation such as 

RDF, OWL. These languages have high expressive constructs and inference logic as 

compared to HTML which is just a presentation language. 

 

The general purpose crawlers which are used for crawling web contents cannot be 

used for crawling Semantic Web contents for the following specified reasons: 

 

1.  In Semantic Web, there is a meaning based linkage of contents as compared to   

keyword based linkage in traditional web. 

2. The language used to represent Semantic Web have different constructs as    

compared to traditional web.  

3.  Semantic Web is represented by heterogeneous set of resources-HTML annotated    

with RDF, OWL documents, DAML+OIL documents. 

 

Thus, Semantic Web crawlers are mandate for crawling the semantic annotated 

documents.  



101 

 

The main characteristics features for Semantic Web for efficient retrieval are as 

follows: 

 

1. The web should be represented with well-defined knowledge representation 

languages which have expressiveness power. 

2. The web should be annotated with broad conceptual coverage of ontologies. 

3. The web contents should be annotated with relevant ontologies, which will 

lead to high precision rate. 

 

5.2 ANALYSIS ON CRAWLERS FOR SEMANTIC WEB   

 

Slug crawler [148] is designed for harvesting Semantic Web contents. This crawler is 

implemented in Java using the Jena API. The features of this crawler is that it fetches 

the RDF files and follows rdfs:seealso links for further fetching of the contents. This 

crawler is designed as command based crawler system. The limitation of this crawler 

system is that it does not provide the methods for reusing of the crawled data and does 

not provide the evaluation details of the system. 

Semantic Crawler based on CBR algorithm [149] harvest the metadata from the 

Semantic Web contents and clusters these metadata contents by annotating them with 

similar ontological concepts. 

Swoogle crawler [111,112,113,150] harvest, parse and analyze Semantic Web 

contents which is annotated within web contents. It extracts metadata for the 

discovered document, computes relations and similarity between documents using N-

grams or URIrefs as keywords.  

Ontotext RDF crawler [151] provides a high level java programmable interface 

design which downloads the RDF contents from the WWW and builds a knowledge 

base. The implementation details of this includes the list of URIs, URI filtering 

parameters like depth of the pages to be crawled are maintained at every phase of 

crawler design. 

RDF crawler [152] is a multithreaded implementation for downloading 

interconnected fragments of RDF data from the web creating a knowledge base and is 

capable of downloading from multiple sources. It takes care of deletion and 

replacement of RDF triples if it hit the same URL twice, keeping the data up to date 

every time. 



102 

 

The semantic crawler research is still in the beginning stages and currently not too 

many semantic crawlers have been developed. Most semantic crawlers do not provide 

their evaluation details [149, 153]. 

 

The above literature studied are particularly for crawlers that are designed for 

Semantic Web contents, all of these crawlers are able to extract Semantic Web 

contents but does not focuses on crawling the web contents which are annotated with 

knowledge representation techniques called ontology which refers to better 

representing a web page with ontological concepts and hence, helps in semantic 

retrieval of information.  

 

This chapter deals with the development of architecture that crawl the ontology 

annotated documents, filtering out the semantically annotated web pages and 

extracting the triples relations from the underlying annotated ontology associated with 

the web page. 

 

5.3 OBJECTIVE OF PROPOSED FRAMEWORK OF SEMCRAWL 

 

The proposed SemCrawl framework has the following objectives:  

 

1. Crawling heterogeneous documents  

  

Crawling heterogeneous documents from the web which are specified in semantic 

representation language such as RDF, OWL, RDF embedded with HTML. 

 

2. Filtering the contents  

 

Only the web contents that have semantic knowledge representation needs to be 

parsed and other contents need to be filtered out. 

 

3.    Parsing the ontology annotated documents 

 

Parsing of the ontology annotated documents into triple relations <S, P, O> where S 

stands for Subject, P stands for Predicate and O stands for Object which allows the 

logical inferences to be made in future.  

 

 

 



103 

 

5.4 PROPOSED ARCHITECTURE OF SEMCRAWL  

 

SemCrawl [48] downloads the web pages which are annotated with ontologies, and 

filters the pages which are not annotated with ontology. The proposed architecture of 

SemCrawl in Figure 5.1 consists of the following functional modules: 

a. Fetch module 

b. Filter module 

c. Link extraction Module 

d. URI Dispatcher Module 

e. Parser Module 

 

 

Figure 5.1 Architecture of Proposed SemCrawl 

 

A. FETCH MODULE 

 

This module fetches HTML, RDF, OWL web pages and their corresponding 

ontologies associated with the web. After fetching the contents, these contents are 

stored in Semantic Buffer. When the contents are available in Semantic Buffer, 

contentready signal is sent to Filter Module which then filters the web pages having 

no semantic annotation.  

The pseudo code of Fetch Module has been shown in Figure 5.2. 

 

 

 



104 

 

  Algorithm Fetch Module(input: URIs, output: fetched contents) 

{ 

wait (contentempty); 

extract URI from the URI Queue ; 

fetch the contents from web; 

store the contents in semantic buffer; 

signal (contentready); 

} 

 

Figure 5.2 Pseudo code for Fetch Module 

 

Fetch Module waits for contentempty signal from the Filter Module. After receiving 

the contentempty signal from the Filter Module, it fetches the contents from the web, 

based on URIs received from URI Dispatcher Module. When the contents are fetched 

from the web, the Fetch Module sends these contents to the Semantic Buffer 

signalling contentready signal to Filter Module for further processing. 

 

B. FILTER MODULE 

  

This module waits for the contentready signal from Fetch Module. On receiving the 

contentready signal from the Fetch Module, this module filters the contents having no 

annotation and the filtered contents are sent to the Link Extraction Module for further 

extraction of the links from the downloaded web pages. 

 

     Algorithm Filter Module (input: semantic buffer, output: filtered pages) 

{ 

Wait (contentready); 

get  the contents from buffer; 

extract the semantic  web pages; 

sends the filtered contents to link extraction module; 

signal (contentempty); 

} 

 

Figure 5.3 Pseudo code for Filter Module 

 

The pseudo code for Filter Module has been shown in Figure 5.3. The Filter Module 

waits for the contentready signal from the Fetch Module. After receiving the signal 



105 

 

from the Fetch Module, it get the contents of Semantic Buffer as input, extracts the 

Semantic Web pages and input the filtered contents to Link Extraction Module for 

further processing. After the specified work, Filter Module signals contentempty 

signal to the Fetch Module for further fetching of contents from the web. 

 

C. LINK EXTRACTION MODULE 

 

Upon receiving the contents from the Filter Module, Link Extraction Module extracts 

the links from the contents and sends it to URI Dispatcher Module, which stores all 

the links in queue and fetch the corresponding contents from those links. The pseudo 

code for Link Extraction Module has been depicted in Figure 5.4. 

 

     Algorithm Link Extraction Module (input: filtered contents, output: extracted 

links and contents) 

   {  

   if (Owl: sameAs or rdf: seeAlso or rdf: alsoDefinedby constructs in contents) 

   send those links to URI Queue for further processing 

           else 

store the web page and ontology in semantic repository database for further   

extraction of concepts; 

   } 

 

 

Figure 5.4 Pseudo code for Link Extraction Module 

 

The Link Extraction Module extracts the links from the contents and if the constructs 

are Owl: sameAs or rdf: seeAlso or rdf: alsoDefinedby are found in the contents, those 

URLs links are sent to URI Dispatcher Module for further fetching of contents from 

the web. 

 

D. URI DISPATCHER MODULE 

 

This module gets the URIs from the Link Extraction Module. These URIs links are 

stored by URI Dispatcher in a queue data structure and follows the First-in-First-out 

policy. The contents are fetched for a specified URL and are given to Fetch Module 

for further storage into Semantic Buffer. Example for a URI Dispatcher module is as 

shown in Figure 5.5. 



106 

 

 

            

     
 

 

 

 

Figure 5.5 Structure of a URI Dispatcher Module 

 

The structure of URI Dispatcher Module has been depicted in Figure 5.5 which is 

queue data structure and consists of a set of URLs which are given as input to the 

Fetch Module for fetching of contents.  

 

E. PARSER MODULE 

 

This module gets the input from the Semantic Repository and parses the ontologies 

into <S, P, O> format where S refers to Subject, P refers to Predicate and O refers to 

Object.  

 

  Algorithm Parser Module (input: semantic buffer, output: parsed output) 

    { 

  extract the crawled ontology  from semantic repository; 

  extract subject, predicate and object; 

store triples in database with three columns subject, predicate, object 

        <S, P,O>; 

    } 

 

Figure 5.6 Pseudo code for Parser Module 

 

The pseudo code for Parser Module has been depicted in Figure 5.6. The crawled data 

from the Semantic Repository has been provided as input to the Parser Module which 

extracts Subject, Predicate and Object called as triple relation, parsed using Jena 

APIs. These triples are stored in MYSQL database as <S, P, O>, as depicted in Figure 

5.7.  

 

 

 

 

 

 

snapdeal.com_slash

_offers_slash_reglo

be.htm 

cromaretail.com

_slash_Laptops-

c-20.htm 

www.flipkart.com_

slash_computers_sl

ash_laptops.htm 

 

 

.. 

 

 

.. 

       OUT IN 



107 

 

   

      Subject   : http://www.semanticweb.org/vandana/ontologies/2014/1/laptop-

reviews-ontology#Laptop_Feedback 

     Predicate: http://www.w3.org/2000/01/rdf-schema#subClassOf 

     Object    : http://www.semanticweb.org/vandana/ontologies/2014/1/laptop-

reviews-ontology#Laptop_Advisors  

Figure 5.7   <S, P, O>   Triples  

 

Figure 5.7 shows <S, P, O> triples of Laptop_Feedback ontology parsed into Subject, 

Predicate and Object which shows Laptop_Feedback is subclass of Laptop_Advisors.  

 

5.5 METHODOLOGY FOR THE DEVELOPMENT OF SEMCRAWL 

ARCHITECTURE  

 

The methodology followed for the development of SemCrawl Framework is depicted 

in Figure 5.8 

 

    

            STEP 1 

 

 

 

          STEP 2 

 

 

                    STEP 3 

 

 

         STEP 4 

  

 

 

           STEP 5 

 

 

Figure 5.8 Methodology for development of SemCrawl Architecture 

 

The following are the steps for methodology followed for development of SemCrawl:   

 

STEP 1. Annotation of Web pages with ontology 

 

The web contents are annotated with ontology. Three ontologies have been designed 

in laptop domain- Laptop_Seller ontology, Laptop_Review ontology, Laptop_ 

Annotation of Web pages with 

ontology 

Fetching of the web pages and 

ontology from the web 

Filtering the HTML contents 

Extraction of Links 

Parsing the contents to <S, P, 

O> 



108 

 

Specification ontology using Protégé framework. These ontologies are annotated with 

the web pages related to them. For example Laptop_Specification ontology is 

annotated with [73] using link href= “  ” attribute with webs page 

http://www.pcworld.com/article/187749/laptop_buying_guide_making_sense_of_the_

specs.htm. 

 

STEP 2. Crawling of the web contents of different sources   

 

Upon receiving the URI from the URI from URI Dispatcher, the contents are crawled 

from the web which is HTML web pages, Semantic Web pages represented in 

Semantic Web languages such as RDF, OWL, which is then stored in Semantic 

Buffer and is given as input for filtering, link extraction and parsing.  

 

STEP 3. Filtering the HTML contents 

 

The HTML contents are filtered from the repositories, only the web pages which are 

annotated with ontology are sent for further extraction of links and the contents that 

are filtered contents have been stored to Semantic Repository. 

 

STEP 4. Extraction of Links 

 

The links are extracted from the web contents and are given as input for further 

fetching. The rdf:seealso, Owl:sameAs construct are used for extraction of links  

which is then given to URI Dispatcher module for further fetching of contents.  

 

STEP 5. Parsing the contents to <S, P, O> 

 

The contents are parsed to <S, P, O> where S refers to subject, P refers to predicate 

and O refers to object. This parsing of the contents represent that every RDF 

statement has a well-defined meaning and is semantically related to each other which 

helps in finding out the inferences.  

 

5.6 EXPERIMENTS AND RESULTS 

 

SemCrawl was implemented in Java using Jena APIs for parsing and Eclipse 

framework for project development. For the experiment purpose 100 pages were 

downloaded, out of which 20 web pages were not relevant and 80 pages were relevant 

to the scope of the work and these pages were annotated with relevant ontologies. The 



109 

 

ontology annotation helps in finding relation between entities of the web page which 

helps in producing relevant results. 

 

The repositories of web pages shown in Figure 5.9 has been crawled. 

 

 
 

Figure 5.9 Repositories of web pages 

 

The repositories consisting of web pages annotated with ontology and simple HTML 

pages were crawled. These web pages are provided to Filter Module that filters out 

the pages having no semantic annotation to it.  

 

The repository shown in Figure 5.9 was given as input to Filter Module that filters out 

the pages with no annotation to it and has a set of web pages which are annotated with 

ontology. The output of Filter Module consists of all the web pages that are associated 

with ontology as shown in Figure 5.10. 



110 

 

 
 

Figure 5.10 Filtered web pages which are annotated with ontology. 

  

The implemented proposed system for SemCrawl framework crawled all the RDF 

pages marked-up with ontology and filter out HTML pages which were without 

annotation. SemCrawl has been implemented with the series of three tests Test1, 

Test2 and Test3 with each test taking a collection of 20 pages, 50 Pages and 100 

Pages respectively, with each test 100% accuracy was achieved. The SemCrawl is 

able to crawl all the relevant contents from the web discarding the unwanted HTML 

web pages. Table 5.1 indicates the results of the various tests conducted on 

SemCrawl. 

 

       Table 5.1 Series of Test conducted on Repositories for Crawler Module 

 

 

Test Repositories Type of Repositories Crawler Output 

Test 1 20 Pages RDF Web Pages 20 Pages 

Test 2 50 Pages RDF,OWL,HTML 

Pages 

38 Pages with filtered out 

12 HTML Pages 

Test 3 100 Pages RDF,OWL,HTML 

Pages 

85 Pages with  filtered 

out 15 HTML Pages 

 



111 

 

The Parser Module was implemented in Java using Eclipse framework and Jena API 

library. Jena is convenient toolkit to manipulate RDF models for developing 

application within Semantic Web [154]. Parser module extracts triples from the 

ontology. Figure 5.11 depicts the screenshot for extracting triples from the ontology 

using Jena Library in Eclipse Development Framework. 

 

      

Figure 5.11 Extraction of Subject, Predicate, Object from Ontology 

 

Triples are extracted in the form <Subject, Predicate, Object> as depicted in Figure 

5.11. The total number of triples depends on the vocabulary of designed ontology. 

Figure 5.12 shows the output of Parser Module showing the triples relation<S, P, O>.  



112 

 

 

Figure 5.12 Console output of Extracted Subject, Predicate, Object 

 <S, P, O> Triples 

 

 

Figure 5.12 depicts ontologies were parsed into <S, P, O> specifying a triple relation 

for the specified ontological concepts. The implemented system was analyzed and 

1546 number of triples was discovered.  

 

The SemCrawl Module successfully fetched the web pages and filters the Semantic 

Web contents for further processing, extracted the link for extraction of web pages 

from the web, and parses the contents into triples. This module has the feature of 

extracting heterogeneous documents from the web which can be further indexed and 

therefore helps in the semantic retrieval of the information. The crawled repository 

was given as input for further indexing for efficient information retrieval. 

 

The next chapter discusses about the indexing architecture SemIndex. 

 

 

 

 

 

 

 

 

 

 



113 

 

CHAPTER VI 
 

 

6. SEMINDEX: AN EFFICIENT INDEXING 

MECHANISM FOR ONTOLOGIES 

 

 

6.1 INTRODUCTION 

 

The ontologies in the Semantic Web are generally represented in RDF, OWL like 

language that has high expressiveness and inference constructs. Ontologies expressed 

in these languages can be represented in following three ways in Semantic Web- 

 

• RDF/XML Code 

• Triples 

• Graph 

 

6.1.1 RDF/XML Code The RDF statements are represented by RDF /XML code. 

Consider RDF/XML document represented in Figure 6.1. 

 

 

</xml version=”1.0” encoding=”UTF-16”?> 

<rdf: RDF 

xmlns: rdf= “http://www.w3.org/1999/02/22-rdf-syntax-ns# 

xmlns:rdfs= “http://www.w3.org/2000/01/rdf-schema#> 

 <rdf: Description rdf: about= “CIM2” 

 <coursename>Mathematics for Technology</coursename> 

 <istaughtby rdf: resource = “http://university.org/faculty-detail-drarvind”/> 

 </rdf: Description> 

</rdf: RDF> 

Figure 6.1 RDF/XML Code 

 

Figure 6.1 shows an example of simple RDF/XML document representing a RDF 

statement “CIM2 is Mathematics for Technology and is taught by Dr. Arvind”. 

The various language constructs used in this example has been discussed as below- 

 

• rdf: Description indicates the beginning of RDF statement. 



114 

 

• rdf: about indicates the Subject of RDF statement(rdf: about=”CIM2”). 

• tag represents the Predicate of RDF statement(<coursename>,<istaughtby>). 

• rdf: resource here indicates the Object of RDF statement  

(rdf:resource=http://university.org/faculty-detail-drarvind). 

 

6.2.2 Triples- RDF is a logical data model for representing set of specific resources 

each provided with a pair of properties and property values. The data model for RDF 

language representation has following three main components: 

(i). Resource is anything that can have a URI; this includes all the web pages, as 

well as individual elements of an XML document.   

(ii). Property is a resource that has a name and can be used as a property.  

(iii). Statement is the combination of a resource, a property, and a value. These are 

also known   as the 'subject', 'predicate' and 'object' of a statement and are 

represented as <S, P, O>.  

 

Triples <S, P, O> represent the relations between the Subject and Object through 

Predicate. For the example discussed in Figure 6.1 the triple <S, P, O> has been 

shown in Figure 6.2. 

 

Subject: CIM2 

 

Predicate: istaughtby  

 

Object: http://university.org/faculty-detail-drarvind 

 

                               Figure 6.2 Triple representation of RDF/XML Document 

 

The example shows the triple representation of an RDF/XML document. 

 

6.2.3 Graph- Various set of statements can be represented as labelled directed graph, 

with nodes of the graph representing as Subject and Object and arc represented as 

Predicates. Each part of the node can be a URI, string element. The graph 

representation for the RDF/XML code example depicted in Figure 6.1 has been shown 

in Figure 6.3. 

 

  



115 

 

 

 

 

 #istaughtby 

 

 

                                

 

 

 

Figure 6.3 Graph Representation for RDF/XML document 

 

 

The graph indicates CIM2 is subject; (http://university.org/faculty-detail-drarvind)is 

the object; connected by the predicate #istaughtby. 

 

The approach for retrieval of web contents represented in HTML cannot be directly 

applied to web contents associated with ontologies because of different approach of 

representation and interpretation. Due to this reason, traditional approaches for 

indexing like N-gram indexes, positional indexes cannot be applied to knowledge 

represented in RDF, OWL. Thus, there is need for different indexing mechanism, 

dealing with the knowledge representation languages like RDF, OWL. Mature 

relational database is regarded as a good basis for RDF store to manage large scale of 

triples. 

 

This chapter deals with comparative analysis of existing RDF Indexing techniques 

based on various parameters, proposed architecture for indexing mechanism, 

describing the experimental results of the proposed method.  

 

6.2 COMPARATIVE ANALYSIS OF INDEXING TECHNIQUES 

 

 

RDF indexing  structures is  based on three categories : Triple Store (TS), Vertical 

Partitioning (VP) and Property Table (PT) [4]. In these indexing strategies, different 

techniques have been used for indexing. A comparative analysis of these three 

indexing strategies based on various parameters is described in Table 6.1. 

 

 

 

 

 

 

CIM2 

http://university.org/

faculty-detail-

drarvind 



116 

 

 

 

 

Table 6.1 Comparative analysis of indexing Techniques 

 

  

 

 

Table 6.1 shows comparative analysis of the various indexing mechanism. Triple 

Store indexing mechanism is widely used as it is supported by many framework for 

storage. Therefore, the proposed architecture has been designed using Triple Store as 

Strategy Description Space  Limitations 

of the 

scheme  

Overhead 

involved 

Implemen

ted by 

systems  

Triple 

Store[156] 

In this approach RDF 

statement of the form 

(Subject, Property, 

Object) is stored in 

triples form; all 

triples are stored in a 

single table with 

three columns (S, P, 

O). 

Space  

requirement is 

determined by 

the number of 

triples in the 

table [155]. 

1. Slow 

execution of 

queries as 

triples are 

stored in one 

single RDF 

table. 

 

2. Requires 

many self 

joins because 

of the single 

large table. 

The 

overhead is 

incurred in 

schema 

storage of 

the triple 

store table.  

Used by 

systems 

like 

Redland 

[157], 3 

store 

[158], 

RDFStore 

[159]. 

Vertical 

Partioning 

[160] 

In this approach   a 

different table is 

created for each 

distinct predicate to 

store all triples which 

represent that   

predicate.  

 

Space 

requirement is 

determined by 

number of tuples 

in the   tables and 

number of tables, 

which is the 

equal to the 

number of 

unique predicates 

in the RDF data 

[155]. 

Most of 

queries 

require joins 

or unions to 

combine data 

from several 

tables. 

The 

overhead is 

incurred in 

storing the 

schema of 

each 

vertical 

partioning 

table. 

 

 

Used by 

systems 

like SW 

Store 

[161]. 

Property 

Table [11] 

In this approach data 

is stored in relational 

tables; it contains 

cluster triples 

containing properties 

defined over similar 

subjects. 

Space 

requirement for 

table is more in 

comparison of 

triple table, 

because adding 

properties 

require adding 

more tables. 

1. Queries 

require 

multiple 

union clauses 

and joins to 

combine data 

from several 

tables. 

 

2. Inability to 

handle multi-

valued 

attributes. 

Reduces 

number of 

self joins.  

Used by 

systems 

like Jena 

[163], 

RDFSuite 

[164], 

Sesame 

[165] and  

4 Store 

[166].  



117 

 

the base architecture for indexing which is discussed in the architectural model of 

SemIndex. 

 

 

 

6.3 OBJECTIVES OF THE PROPOSED WORK 

 

The proposed framework for indexing has the following objectives: 

 

1. To create an index for RDF statements which helps in inference logic. 

2. To create an index for HTML file with respect to Ontology. 

3. The index created for the ontology annotated documents should be of smaller size 

in comparison to the index for the traditional web. 

4. The index created should help in effective information retrieval.  

 

6.4 PROPOSED ARCHITECTURE FOR INDEXING:  SEMINDEX 

 

The proposed architecture of SemIndex indexes the web pages that are annotated with 

ontologies. The proposed framework of SemIndex is depicted in Figure 6.4 and 

consists of the following main modules: 

 

(i) SemCrawl Module 

(ii) Indexer Module 

(iii) Ontology Extractor Module 

(iv) Quad Store RDF Index 

(v) Onto_HTML Mapping Database 

 

The output of SemCrawl Module is given as input to Ontology Extractor Module and 

Indexer Module. Ontology Extractor Module extracts HTML File name and its 

corresponding ontology which is stored in Onto_HTML Mapping Database as 

<HTML File, Ontology>. The Indexer Module extracts Subject, Predicate, Object of 

the corresponding ontology which is stored in Quad Store RDF index as <Subject, 

Predicate, Object, Ontology>. The result is returned for the query entered based on the 

searching of the specified indexes. 

 

 

 



118 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Architecture of SemIndex for indexing crawled Ontologies 
 

 

The detailed functionality of functional modules used in SemIndex has been discussed 

below: 

 

6.4.1 SemCrawl Module  

 

As discussed earlier in Chapter 4, SemCrawl crawls the HTML web pages, web pages 

associated with ontology and domain ontology that is used to describe a web page.  

The crawler module also filters out the web pages which are just HTML pages 

whereas the pages which have ontology associated with them is stored in repositories. 

The output of SemCrawl Module acts as input to the SemIndex.  

 

 6.4.2   Indexer Module  

 

The input of this module is the parsed output and the crawled domain ontology. The 

Indexer Module parses the associated ontology into <S, P, O, Ontology> which 

signifies Subject, Predicate, Object referring to Ontology, for which triples has been 

parsed. The RDF contents are parsed into Subject, Predicate, Object using Jena Parser 

[154].Figure 6.5 specifies the pseudo code for Indexer Module. 

(l) (k) 

(f) 

(c) 

(j) 

(b) (a) (d) 

(e) 
(g) 

(h) 

(i) 

(a): web pages 

(b): web pages 

(c ):parsed output  

(d):HTML file< ontology> 

(e ): HTML file< 

ontology> 

(f) : ontology 

(g) :ontology 

(h) : ontology 

(i) : <S,P,O.Ontology> 

(j) : <S,P,O.Ontology> 

(k) :  result 

(l) : query 

 

SemCrawl    

Module 

 

Semantic 

Repository 

Database 

Crawled 

Ontology 

Repository 

Ontology 

Extractor 

Module  

Indexer 

Module 

 

Onto_HTML 

Database 

 

 

Query 

Module 

Quad store 

RDF Index User 



119 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Pseudo code for Indexer Module 

 

The Indexer Module creates an index of <S, P, O, Ontology > after parsing the 

ontology file from the Crawled Ontology Repository of SemCrawl Module and 

triples. 

 

Example of Indexer module 

 

Consider the example of  Laptop_Seller Ontology in Figure 6.6. 

 

 
    

Figure 6.6 Instances of Laptop_Seller Ontology 

 

For ontology Laptop_Seller , Figure 6.6 indicates having RDF statement “Flipkart is a 

type of Laptop_Seller”. This RDF statement is parsed into Subject, Object, Predicate 

as given in Figure 6.7. 

 

 

 

 

Algorithm Indexer Module(input: parsed output, output: index) 

 { 

read ontology file from the crawled  ontology  repository; 

parse ontology file ; 

extract RDF triples; 

insert subject, predicate, object ,ontology value to database 

} 



120 

 

Amazon Laptop_Seller 

 

 

 

 

 

 

 

 

 

Figure 6.7 Example of a Triple <Subject, Predicate, Object> 

 

Figure 6.7 shows the triple relation of <S, P, O> for the ontology Laptop_Seller where 

S is Flipkart, P is type_of and O is the Laptop-Seller. Graphical representation for the 

triple relation is as depicted in Figure 6.8.  

 

 

       #type_of 

 

 

 

 

Figure 6.8 Triple representation 

 

The example in Figure 6.8 specifies the triple relation between the Laptop_Seller and 

Flipkart, i.e. Flipkart is a type_of   Laptop-Seller. 

6.4.3 Ontology Extractor Module  

 

This module extracts the ontology name associated to a particular ontology and 

indexes as <HTML File, Ontology> onto the database. Figure 6.9. Specifies the 

algorithm for ontology extractor module. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Algorithm for Ontology extractor 

 

 

            Subject   : http://www.semanticweb.org/vandana/ontologies/2014/1/laptop- seller-       

ontology#Flipkart 

Predicate:  http://www.w3.org/1999/02/22-rdf-syntax-ns#type-of 

 

Object     :  http://www.semanticweb.org/vandana/ontologies/2014/1/laptop-seller 
 

Flipkart Laptop-seller 

Algorithm Ontology Extractor (input: web pages, output: index) 

 { 

parse web pages from Semantic Repository; 

parse ontology from crawled ontology repository; 

extract the ontology name and associated HTML web page;  

index (HTML File, Ontology) in the database; 

} 



121 

 

HTML File    : E:\projects\RDF\Final\crawled-data\filtered-web-

content\amazon.htm 

 

Ontology  : laptop-seller-ontology 

 

 

Ontology Extractor Module parses the web pages and ontology, and extracts the 

HTML File name of that web page and the ontology associated web page.  The 

created index < HTML file, Ontology> will be stored in database. 

 

Example of Ontology extractor Module  

 

 

 

 

 

 

 

Figure 6.10 Example <HTML File, Ontology> index 

 

Figure 6.10 depicts the example of <HTML File, Ontology> index, which shows that 

HTML web page, is associated with Laptop_Seller ontology.  

 

6.4.4 Quad Store RDF Index 

 

Quad Store consists of four indexes in the database Subject, Predicate, Object and the 

annotated ontology.  

 
 

 

 

Figure 6.11 Index of<Subject, Predicate, Object, Ontology> 

 

Figure 6.11 represents the index, where Predicate is type_of and associated ontology 

is Laptop_Seller  which means the statement “Amazon is a type_of Laptop_Seller” is 

specified in Laptop_Seller ontology. 

6.4.5 Onto_HTML Mapping Database 

 

The Ontology Extractor Module extracts the ontology and the web page associated 

with it that is indexed in database as<HTML File, Ontology >. 

 

 

 

 

Subject Predicate Object Ontology 

Amazon Type-of Laptop_Seller Laptop_seller Ontology 



122 

 

HTML File Ontology 

Flipkart.htm Laptop_Seller ontology 

Stereo_Speakers_Specs.htm Laptop_Specification-ontology 

 

Figure 6.12 Index of < HTML File,Ontology> 

 

Figure 6.12 represents ontology and HTML file having ontology associated with it. 

For example two entries are shown which shows that HTML file Flipkart has 

Laptop_Seller ontology associated with it. And HTML file describing stereo speaker 

specification has Laptop_ specification ontology associated with it. 

 

6.5 EXPERIMENTS AND RESULTS 

 

The SemIndex architecture was developed in Java using Eclipse framework and Jena 

APIs. MYSQL server was used for indexing. Taking input as the Semantic Repository 

Database, the Ontology is parsed to <S, P, O>.  Figure 6.13 depicts the results, in 

which the ontology has been parsed into <Subject, Predicate, Object>. 

 

 
   

Figure 6.13 Parsing of results to <S, P, O> 

 

Figure 6.13 depicts the parsed output of <S, P, O> done using Jena framework which 

describes the logical relations for RDF statements. 

 



123 

 

 
 

Figure 6.14 Ontology Extractor Output 

 

Figure 6.14 depicts the <HTML file, Ontology > extraction, the output of Ontology 

Extractor Module which signifies the HTML file associated to ontology. Consider 

example in Table 6.2. 

 

   Table 6.2 HTML File and the associated Ontology  

 

 

The HTML file and the associated Ontology for the parsed results are depicted in 

Table 6.2. 

HTML File Associated Ontology 

E:\projects\RDF\Final\crawled-data\filtered-web-content\    

Stereo_Speakers_Specs.htm 

laptop-specification 

ontology 



124 

 

 
 

Figure 6.15   Ontology index of <Subject, Object, Predicate, Ontology> 

 

Figure 6.15 depicts the ontology index of <Subject, Object, Predicate, Ontology> 

stored in MYSQL database. The <Subject, Object, Predicate> is parsed using Jena 

Parser and the index contains the associated ontology with the parsed triples. 

Figure 6.16   Index of < HTML file, Ontology, > in database 



125 

 

 

Figure 6.16 shows the index of <HTML file, ontology> into the MYSQL database 

which specifies HTML files which are associated with the ontology. 

 

6.5.1 Evaluation Metrics 

 

Two indexes, <S, P, O, Ontology> and <HTML file, Ontology> has been created. The 

proposed system states that rather than deploying full text indexation technique for 

web contents, it is better to index the ontology associated with pages. The proposed 

framework is advantageous in terms of index size in comparison to full text 

indexation. The below graph depicts the index size of web contents with only 

ontology indexed and index size of web contents with the index of the whole page. 

The first approach of indexing only ontology have index size small as compared to 

indexing the whole web contents. Figure 6.17 depicts the graph of web content vs. 

index size i.e. the HTML page indexing  have index size more as compared to 

proposed search. 

 
 

 

Figure 6.17 Graph of HTML web contents without Ontology Vs using SemIndex 

 

The proposed architecture of SemIndex module was well implemented using MYSQL 

database for storing indexes and Jena for parsing and results shows that index size as 

compared without annotated ontology repositories have more space requirement as 

compared to the proposed approach and in addition the proposed approach well 

justifies the index creation for information retrieval. 

  



126 

 

CHAPTER VII 

 

7. SEMRANK: A NOVEL HYBRID APPROACH FOR 

RANKING ONTOLOGY ANNOTATED WEB           

DOCUMENTS 

 

7.1 INTRODUCTION 

 

A large result set is generally produced in response to user query to the search engine 

and the user is forced to search through the complete set of results which in turn is a 

labour-intensive work. Hence, there is a need for ranking the result pages producing 

the more relevant results at top and less relevant results afterwards. Highly ranked 

pages have the probability of containing more relevant information as compared to 

low ranked page. Such a ranked system is called ranked retrieval system. 

 

Google has Page Rank [42] algorithm that works on a set of simple web pages, 

Google ranking system is based on around 200 ranking features including in-links, 

out-links, personalization which gives a set of ranked results over a collection of web 

pages. 

 

Google is the search engine that order its search results based on page’s “popularity” 

as computed from the Web’s graph structure [42]. But, Google’s PageRank algorithm, 

[42,111,113] which is based on the “random surfer model”, cannot be directly used in 

the Semantic Web as URIs mentioned in a RDF/OWL documents are not merely 

hyperlinks but semantic symbols referencing classes, semantic web instances, 

ontology documents, normal Web resources, etc. Semantic Web surfing is not merely 

random hyperlink-based surfing but rational surfing that requires understanding the 

semantic content of documents [167]. 

 

Therefore, the proposed approach for ranking of semantic documents is required to 

work on collection of web pages where knowledge representation techniques called 

ontologies has been used to annotate documents. The novel ranking approach is 

proposed which is hybrid approach, having two dimensions of ranking- ranking 



127 

 

metrics based on traditional model of web page ranking and ranking metrics for 

ontology annotated web pages. 

 

7.2 COMPARATIVE ANALYSIS OF ONTOLOGY RANKING ALGORITHMS 

 

For finding ontology various search engines like Swoogle, Falcon, and Watson are 

developed. These search engine returns a set of ontologies corresponding to a set of     

query in contrast to Google which is used to find web pages corresponding to a set of 

query. The searched ontologies with regard to a domain can be reused. For ranking 

these ontologies their has been various techniques- AKTive Rank, Swoogle Rank, 

Ontokhoj, SemSearch, Ontoselect, Falcon algorithm. Table 7.1 depicts a detailed 

comparison of ranking algorithms used for selecting ontology. 

 

Table 7.1 Comparative Analysis of Ontology Ranking Algorithms 

Ranking 

Algorithm 

Ranking 

Method 

Ranking Technique Used Limitations 

AKTiveRank

[168,169] 

Structure 

analysis of 

concepts. 

 

AKTiveRank matches query 

terms with the labels of the 

classes in the ontologies. It 

uses four types of measures 

for each ontology to measure 

the ranking.   

The four measures it uses for 

ranking are  

Class Match Measure (CMM), 

Density Measure (DEM), 

Semantic Similarity Measure 

(SSM) and Betweenness 

Measure (BEM).  

It uses features of concepts 

such as their hierarchical 

centrality, structural density 

and semantic similarity. 

 

1. Introducing these time- consuming 

metrics and being lack of efficient 

implementation [170] make AKTiveRank 

unsuitable for large scale semantic web. 

2. Also, the resulting score depends very 

much on user's queries. 

3. Individual instances and vocabulary 

terms cannot be ranked. 

4. The AKTiveRank cannot respond to 

the real-time queries as the final results 

cannot be reached until the preliminary 

results from the ontology search engine 

are analysed. 

Swoogle 

[111,112,113]  

Similar to 

the 

PageRank 

algorithm 

called as  

Rational 

random 

surfing 

model 

 

1. Similar to the Page Rank 

algorithm with analysing the 

link structure. 

 

2. Analyses links and referrals 

between the ontologies in the 

hope of identifying the most 

popular ones. 

 

3. The assumption underlining 

their ranking methods is that 

there are hyperlinks existing in 

the ontologies on the SW to 

connect each other and the 

weight of an ontology can be 

determined by the number of 

1. However, the majority of ontologies 

available on the Web are poorly 

connected, and more than half of them are 

not referred to by any other ontologies at 

all. Poor connectivity of ontologies would 

produce poor Page Rank results. 

 

2. Furthermore, a popular ontology does 

not necessarily indicate a good 

representation of all the concepts it 

covers. Popularity does not necessarily 

correlate with ‘good’ or appropriate 

representations of knowledge. 

 

3. Search does not allow properties of 

ontology such as structure to be searched. 



128 

 

 

 

 

 

 

 

 

 

citations from other 

ontologies. 

 

Ontokhoj 

[108] 

Similar to 

PageRank 

algorithm. 

Ranking algorithm termed 

OntoRank which assigns a 

rank to an ontology in 

Semantic Web, based on   

priorities for different types of 

relationships.  

Onto Rank algorithm does not take into 

account the correlation between the 

search result and user’s query, which 

leads to ontology of low correlation posed 

in ranked result list. 

OntoQA 

[172 ] 

Based on 

certain 

metrics 

OntoQA evaluates ontologies 

based on certain factors of 

schema and instances and 

overall score for ontology for 

ranking. 

It has limitation of user involvement and 

has only keyword based query type. 

OntoSearch 

[181] 

Structure 

based  

It is based on searching for 

structure using a simple query 

language which allows all the 

requirements identified to be 

covered. 

It can only search for one type (RDFs) of 

ontology file, and it only compares the 

user keywords with the contents of the 

ontology files wherever they occur. And 

so it matches indiscriminately the 

keywords both from concepts and 

comment fields [181]. 

 

SemSearch 

[173 ] 

Closeness 

to user 

specified 

queries 

The search engine considers 

two factors while ranking - 

matching distance between 

each keyword and its semantic 

matches and the other is the 

number of keywords that 

match the search result. 

SemSearch does not consider relations 

between concepts, and neither does it 

disambiguate in cases when there is more 

than one relation. 

Recon Rank 

[ 174] 

Uses 

PageRank

/HITS 

algorithms 

It uses PageRank type 

algorithm, which unifies the 

documents and resources in a 

dataset. The method generates 

scores for the documents and 

entities in a collection, but not 

for the properties. 

Recon Rank does take data provenance 

into account, however because it 

simultaneously operates on the object 

graph, it is susceptible to spamming. 

Ontoselect 

[175] 

Structure 

based  

This algorithm rank dynamic 

ontologies and is based on 

three measures and a 

combined score of that 

measures. 

It lacks concept based searching of the 

ontologies and just matches the user 

entered query keywords with classes and 

properties in ontologies. 

Falcon 

[115,116 ] 

Uses 

popularity 

based 

ranking 

It ranks concepts and ontology 

according to their relevance to 

the keyword query and their 

popularity on the Semantic 

web. 

It has current limitation of user interaction 

and has only keyword based query type. 

 

 



129 

 

Related work discussed in Table 7.1 is based on ranking ontologies, and these 

approaches use various measures as discussed to compute the ranking while searching 

for ontology in a certain domain. Whereas the approach in the current research is to 

rank the web pages which are annotated with ontologies. Thus, it requires two 

dimensions for ranking-one is based on  metrics for finding particular ontology that 

matches the search term of the query and the other dimension is to rank all the web 

pages associated with that ontology, after finding the particular ontology. 

 
These ranking techniques covers one dimension of research -selecting ontology and 

for the other dimension traditional approach for ranking techniques was deployed. 

 

7.3  OBJECTIVES OF PROPOSED SEMRANK 

 

The objectives of the proposed research work are as follows: 

 

1. Design of architecture for ranking semantic annotated web pages.  

2. Proposing a ranking technique that supports two dimension of ranking  

2a. Ranking metrics for selecting particular ontology from the ontology     

corpus and 

2b. For the selected ontology, ranking the web pages annotated with the 

selected ontology.  

 

The next section discusses proposed method for ranking of ontology annotated web 

documents. 

 

7.4  PROPOSED ARCHITECTURE FOR RANKING ONTOLOGY 

ANNOTATED WEB DOCUMENTS  

 

The architecture of SemRank has been proposed for ranking ontology annotated web 

documents as shown in Figure 7.1. It uses a mechanism for initially matching the  

concepts in ontology and then ranking the web pages annotated with that ontology. 

 

 

 

 

 



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1   Proposed Framework for Ranking Ontology Annotated Web Pages 

The proposed architecture consists of the following functional modules: 
 

(i)     Query Pre-processing 

(ii)    Match Logic 

(iii)   Annotated Web Link Extractor 

(iv) Rank Logic  

 

The user enters a query through Query Interface Module which is preprocessed by 

matching with WordNet [105] vocabulary. The dataset of concepts in query and 

WordNet matched vocabulary is given as input to Match Logic Module where using 

the ranking metrics Match_Measure (O); the ontology with the maximum 

Match_Measure, Omax is found. The web pages linked with Omax ontology is extracted 

using Annotated Web Page Extractor Module; the web pages related to a ontology are 

ranked using Rank Logic Module that uses Rank_Score metrics. The ranked web page 

set is given as result to the user. 

Query Interface 
Query Pre-processing 

Match Logic 

Annotated Web Page 

Extractor 

Ontology Database 

Rank Logic  

Annotated Web Page 

Repository 

Web Page Buffer 

query

Web pages 

Ontology 
Concept dataset 

omax 

query

doRank 

Web pages 

Results 

web page Set 

fillbuffer



131 

 

7.4.1 Query Pre-processing 

The query entered by the user is checked with the WordNet [105] for synonym, 

hyponyms and meronyms of the original query term, all the data sets has been stored 

for matching with the concepts in the ontology. This adds to generalization of the 

query term. For example searching for query “laptop price” all other concepts like 

Laptop cost, Notebook cost, Notebook price are searched in Ontology for the concepts 

matching the WordNet. 

7.4.2 Match Logic 

 

For the query entered by user, the concepts and the WordNet vocabulary have been 

matched with the classes in the Ontology. The Match Logic Module uses Match-

Measure (O) metrics for selecting Ontology O. 

 

Match-Measure Definition: Let Q = {C1, C2…….Cn} where Cn represents the 

concepts in a query Q of user and M be the set of potential class labels obtained from 

the ontology and the match for the query against the Ontology concepts has been 

computed  as defined in  equation 7.1 as  

  

 

Where                (7.1)  

 i = number of ontologies 

f (R) = Function of Relatedness 

α , β  are parameters, where α + β  = 1; α ≤ 1 and β ≤ 1 

Concept_Weight_Measure is defined in equation 7.2 as 

 

        ∑
=

=
n

i

CnMfMeasureWeightConcept
1

),(__           (7.2) 

where  

n = number of concept in query 

 

f (M, Cn) =  function  which  gives value 1 if ontology contains a exact class label 

matching Cn and 0 if ontology does not contain a class label matching Cn. 

       1 if ontology contains exact class label matching Cn 

      where f (M, Cn) =              0 if ontology does not contains a class label matching Cn

    

    (7.3) 

(_.([) ≤≤ Measure Weight )])_max 1 R f Concept O n i β α += MeasureMatch (_



132 

 

Concept_Weight_Measure is based upon Class Match Measure (CMM) of AKTive 

Rank Algorithm [169].  

 

Function of Relatedness f(R)-It is the other factor which has been used to select the 

ontology. Relatedness refers to, if a concept is related to other concept. For example 

for query “Laptop Specification Dell”, the concept laptop specification and concept 

Dell if found to be in triples as <Subject, Property or Object> are assigned weight as 0 

otherwise it is 1. 

is as defined in equation 7.4 as - 

  

                                      1 if ontology contains the concepts in any triple 

f(R) =                         0 if doesn’t contains the concepts in triples                        (7.4)

                       

 

In measure Match_Measure(O), α = 0.6 and β = 0.4; Concept_Weight_Measure is 

given more weightage than Function of Relatedness, as it is more important for 

concept to be found in ontology. The algorithm for selecting the ontology having the 

maximum Match_Measure (O) is as given in Figure 7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Algorithm for Match-Logic (O) of Ontology 

 

Algorithm Match-Measure (O) (input: query (C1, C2…..Cn) ,  output: ontology with 

max Match_Measure, Omax ) 

{ 

for each concept C do  

 for each ontology do 

 { 

                find Concept_Weight_Measure; 

                add the concept_weight in array [weight, ontology]; 

                Calculate f(R); 

 } 

find Match-Measure for each ontology; 

return ontology with max Match-Measure;  

} 



133 

 

7.4.3 Annotated Web Page Extractor 

 

This module is responsible for extracting web pages related to the selected ontology. 

Ontology matching a query is selected by Match Logic with certain measures and all 

the web pages which are annotated with the selected ontology is extracted. All the 

extracted web pages are then stored in Web Page Buffer. The algorithm for Annotated 

Web Page Extractor is as described in Figure 7.3 

 

 

 

 

    

 

 

 

 

                        Figure 7.3 Algorithm for Annotated Web Page Extractor 

The input to Extractor algorithm is ontology and the output is a set of web pages 

corresponding to that ontology. It waits for signal fillbuffer, upon receiving the signal 

fillbuffer from Rank Logic Module it extracts the web pages corresponding to Omax 

and store those web pages in Web page Buffer and signal doRank signal to the Rank 

Logic Module. 

7.4.4 Rank Logic 

After finding the appropriate ontology, there is need to rank the web pages annotated 

with that ontology which is based on certain metrics.  The web pages extracted for the 

selected ontology Omax, the web pages are ranked based on Rank_Score metrics.  

The Rank_Score is specified in Equation 7.5 as       

)))((.()),(.(_ APRLinkweightqcTextFreqScoreRank βα +=   (7.5) 

 

Where  1=+ βα  ; α ≤ 1 and β ≤ 1 

Algorithm Extractor (W) (input: ontology, output: web pages) 

{ 

Wait (fillbuffer) 

for ontology with max Match_Measure(O), Omax do 

  { 

   find (Omax in web_page_repository); 

   store all web pages corresponding to Omax; 

   } 

signal (doRank); 

return (web pages); 

} 



134 

 

The value of α=0.6 is considered giving more weightage to the similarity of the 

TextFreq and β =0.4 to Linkweight. 

TextFreq(c, q) refers to the frequency of the concept similar to the query in web page. 

Linkweight(PR(A)) refers to the weight measure of links from a given web page  

document A, A's Page Rank is computed as specified in equations 7.6, 7.7, 7.8 as  

 )()()( AlinkPRAdirectPRAPR +=                                    (7.6) 

 )1()( dAPR
direct

−=                       (7.7) 

 )
)(

)(
.......

)1(

)1(
()(

TnC

TnPR

TC

TPR
dAlinkPR ++=             (7.8) 

Where T1,……, Tn are web documents that link to A; C(Ti) is the total outlinks of Ti; 

and d is a damping factor, which is typically set to 0.85[42]. 

Algorithm for computation of RankScore for a query is as given in Figure 7.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Algorithm for Rank Logic Module 

The module takes as input the set of web pages and produces a set of ranked web 

pages. Upon receiving the signal doRank from the Annotated Web Page Extractor 

Module this module computes Rank_Score metrics and the ranked web pages are 

Algorithm Rank Logic Module (input: set of web-page; output: set of ranked 

web pages) 

{ 

Wait (doRank); 

For (all web pages for Omax) do 

{ 

       Calculate frequency for each term in document; 

       Calculate linkweight for each web-page; 

      Compute Rank_Score; 

} 

Arrange web-pages in decreasing order of rank-score; 

return (result web pages); 

Signal (fillbuffer); 

} 



135 

 

returned as result set signalling fillbuffer signal to Annotated Web Page Extractor 

Module for further storage of web pages in Web Page Buffer. 

 

7.5 EXPERIMENTS AND EVALUATION 

 

In this work, the web pages have been annotated with the ontology. For experimental 

evaluation, results of 20 pages have been shown. Three ontology have been 

developed, Laptop_Specification, Laptop_Seller and Laptop_Review, these three 

ontology are annotated with the web pages. For query-“Laptop Cost”, the concept is 

searched in the WordNet for synonym, hypernym and these concepts are searched in 

the ontology and Match_Measure was calculated for the query. 

 

Table 7.2    Query concept for Laptop Cost  

 

Query Fired WordNet Vocabulary 

 

Laptop Cost Laptop-Notebook, Computer 

Cost-Price, Toll 

 

The different concepts  for query “Laptop Cost”  is searched in WordNet Vocabulary,  

which is shown in Table 7.2. In order to compute Concept_Weight_Measure defined 

in  equation 7.2 is used and its calculated value is depicted in Table 7.3. 

   ∑
=

=
n

i

CnMfMeasureWeightConcept
1

),(__      (7.2) 

   

Table 7.3 Concept_Weight_Measure for ontologies 

 

Ontology Concept_Weight_Measure 

Laptop_Specification(O1) 2 

Laptop_Seller(O2) 1 

Laptop_Review(O3) 1 

 

Table 7.3 shows the computed Concept_Weight_Measure for different ontology, 

where for each ontology,  their Concept_Weight_Measure is calculated with respect to 

a concepts of query. 

 

Measure for Relatedness is calculated according to equation 7.4  

 



136 

 

              f(R)  =           1 if ontology contains the concepts in any triple 

                   0 if doesn’t contains the concepts in triples              (7.4)              

Table 7.4 Measure for Relatedness   

 

 

 

Table 7.4 shows the Relatedness value for different ontology. Measure for metrics 

Match_Measure is calculated according to equation 7.1 as depicted in table 7.5. 

 

)](.)__.([max_ 1 RfMeasureWeightConceptMeasureMatch ni βα += ≤≤    (7.1) 

 

Table 7.5 Measure for Match_Measure 

 

Ontology Match_Measure 

Laptop_Specification(O1) 1.6 

Laptop_Seller(O2) 0.6 

Laptop_Review(O3) 0.6 

 

Match_Measure for Laptop_Specification(O1) ontology is 1.6. As Match-Measure for 

ontology O1 is maximum, ontology O1 is selected. Now for this ontology all web 

pages annotated with this ontology are extracted. The web pages corresponding to 

ontology Omax are ranked based on Rank_Score metrics. Overall computed Rank_ 

Score  as defined in equation 7.5 is calcualted in Table 7.6.  

 

)()),(( LinkweightqcTextFreqScoreRank βα +=−   (7.5) 

Table 7.6 Overall computed Rank_Score 

Table 7.7 shows Rank_Score for web pages and their corresponding ranks. 

 

Ontology Relatedness 

Laptop_Specification(O1) 1 

Laptop_Seller(O2) 0 

Laptop_Review(O3) 0 

Document Query 

Concept 

Textfreq(c,q) LinkWeight Overall  Computed 

Rank_Score 

D1 C1 16   

 C2 11 0.43 16.372 

D2 C1 9   

 C2 11 0.56 12.224 

D3 C1 6   

 C2 3 0.42  5.568 

D4 C1 9   

 C2 4 0.72  8.088 

D5 C1 12   

 C2 10 0.18 13.272 



137 

 

Table 7.7   Rank Score for Web pages 
 

 

 

 

The ranked results  for the query “laptop display” is as given in Table 7.8, which was 

compared with human approach as, mentioned in Table 7.9. 

 

Table 7.8 Ranked results for Query “laptop display” 

 
 

 

 

 

 

 

 

 

 

 

Table 7.9 Human Rank vs. Proposed Approach 

  

 

Web Document Rank-score Rank 

P1 16.372 1 

P2 12.224 3 

P3 5.568 5 

P4 8.088 4 

P5 13.272 2 

Ranked Results Human rank Proposed 

Approach  

http://www.blog.laptopmag.com/laptop-buying-

guide.htm 

 

4 1 

http://www.compreviews.about.com/od/video/a/Lapt

op-Display-And-Graphics-Guide.htm 

 

2 3 

http://www.gadgetsguru.in/laptop/index.htm 4 5 

http://www.pcworld.com/article/187749/laptop_buyi

ng_guide_making_sense_of_the_specs.htm 

 

3 4 

http://www.wikihow.com/Choose-Which-Laptop-to-

Buy.htm 

 

1 2 

1. http://www.blog.laptopmag.com/laptop-buying-guide.htm 

2. http://www.compreviews.about.com/od/video/a/Laptop-Display-And-Graphics-

Guide.htm 

3. http://www.gadgetsguru.in/laptop/index.htm 

4.http://www.pcworld.com/article/187749/laptop_buying_guide_making_sense_of_t

he_specs.htm 

5. http://www.wikihow.com/Choose-Which-Laptop-to-Buy.htm 



138 

 

The values for human rank vs. proposed approach for the set of web pages are as 

depicted as graph in Figure 7.5. 

0

1

2

3

4

5

6

1 2 3 4 5

Human Rank Proposed Approach

R

A

N

K

Pages

 

Figure 7.5 Human approach vs. proposed approach 

  

7.5.1 Validation of Proposed Work 

Pearson product-moment correlation coefficient [169] has been used to calculate the 

relationship between human rank and the proposed approaches specified in equation 

7.9. 

(7.9) 

 

 

Where 

Where rxy= relation coefficient between x and y 

x1….xn= refers to dataset x containing n values 

y1…..yn=refers to dataset y containing n values 

 

If the correlation coefficient is close to the proposed approach(r >0.5) means it has 

high collinear relationship between two different data sets. The Pearson Correlation 

coefficient for human rank vs. proposed approach comes out to be r = 0.6 which 

indicated a positive correlation between proposed approach and human rank. 

 



139 

 

Architecture for ranking annotated ontology documents has been proposed in this 

chapter which needs first to select the ontology and then rank the web pages annotated 

with that ontology. The proposed approach is a novel approach having two 

dimensions-one, selection of an appropriate ontology and second, ranking the web 

pages annotated with that ontology which provides a motivation towards knowledge 

representation with ontologies. The research approach is investigated with human 

knowledge engineers to compare with the proposed approach which has shown 

comparable results. In addition, these results are also validated using Pearson-Product 

Correlation Coefficient. 

 

 

 

 

 

 

 

 



140 

 

CHAPTER   VIII 

 

 
8. IMPLEMENTATION AND RESULTS OF 

PROPOSED SEMENGINE 
 

8.1 INTRODUCTION 

 
SemEngine has been proposed in this research work, that searches ontology annotated 

documents for which the ontologies have been developed in the domain of laptop and 

the web documents are annotated with those ontologies. The crawling system i.e. 

SemCrawl, for crawling the domain ontology and the annotated web pages, the 

indexing system i.e. SemIndex, for indexing ontology annotated web documents, the 

ranking system i.e. SemRank for ranking ontology annotated web pages, has been 

proposed and developed. The different modules for the developed SemEngine system 

are as follows:   

 

1. Development of Ontology 

2. SemCrawl system 

3. SemIndex System 

4. SemRank system 

 
This chapter describes the experiments and results for the system. 

 

8.2 PERFORMANCE METRICS 
 

The performance metrics used for the research are as discussed below  

 

PRECISION   Precision (P) is the fraction of retrieved documents that are relevant as 

given in equation 8.1  

 

Precision = # (relevant items retrieved)  

  

        # (retrieved items)                                 (8.1) 

 

RECALL Recall(R) is the fraction of relevant documents that are retrieved as given 

in equation 8.2 as 

 



141 

 

Recall= # (relevant items retrieved)  

# (relevant items) 

 

F-MEASURE It is the weighted harmonic mean of Precision and recall as given in 

equation 8.3 as  

      F-measure =    2PR 

    P+R            (8.3) 

Where P stands for Precision and  

R stands for Recall 

 

The next section discusses about the experiments and results conducted in order to 

validate the proposed work in the thesis. 

 

8.3   EXPERIMENTS AND RESULTS 
 

The domain specific ontology creation can be done either through tools like Protégé, 

OntoEdit or searching of required ontology can be done through various search 

engines tools like Swoogle, Watson, Falcon. For this research work, ontology was 

searched in the domain of laptop, but the relevant ontology with the required concepts 

was not available, therefore the ontology creation through ontology development tools 

was opted. Various ontology development tools are available for ontology 

development. For this research, Protégé framework has been used for ontology 

development. 

 

The requirements for this approach to be implemented is that the pages are required to 

be annotated with relevant ontology which requires lot of efforts which can be done 

through various approaches like manual annotation, semi-automatic approach and 

automatic approach. In this research, ontology has been manually annotated as the 

other approaches require an intensive knowledge of machine-learning approaches and 

natural language processing techniques. 

 

8.3.1 Development of Ontology 

 

The following three ontologies have been developed in the domain of laptop using 

Protégé framework.  

• Laptop_Specification Ontology 

(8.2) 



142 

 

• Laptop_Seller Ontology 

• Laptop_Review Ontology 

• Laptop_Specification ontology in Protégé Framework has been shown in 

  Figure 8.1.

 

 

 

Figure 8.1 Development of Laptop_Specification Ontology in Protégé Framework 

 

Figure 8.1 shows the development of Laptop_Specification Ontology in Protégé, the 

right side of the pane shows the different classes and subclasses of this ontology and 

the left side of the pane shows the ontovisualizer result of the developed ontology. 

The detailed implementation of the development of three ontologies has been 

discussed in Chapter 4. 

 

 

 



143 

 

Various experiments were conducted on 50 pages. For clarity, 20 pages with the 

associated ontology and plain HTML pages without any annotated ontology are as 

shown in Table 8.1. 

 

Table 8.1 shows, five examples of web pages associated with Laptop_Seller ontology, 

five web pages annotated with Laptop_Specification ontology and five web pages 

annotated with Laptop_Review Ontology and five pages were not annotated with any 

ontology.  

Table 8.1 Web Pages with the associated ontology 

 

For Implementation, Java [29] with Jena APIs [154] is used in Eclipse 

Development Framework [29]. Jena Framework is designed and implemented by 

HP Labs; the Jena Framework is a set of Java APIs used for Semantic Web 

application development. Jena provides a reasoning subsystem for Ontologies 

developed using RDF, OWL. 

 

 

Specification Seller Plain HTML Pages Review 

http://www.pcworld.co

m/article/187749/laptop

_buying_guide_making

_sense_of_the_specs.ht

m 

http://www.snapdeal

.com/offers/reglobe 

 

http://wikipedia.com http://www.noteb

ookreview.com/be

st_laptops/ 

 

http://www.compreview

s.about.com/od/video/a/

Laptop-Display-And-

Graphics-Guide.htm 

http://www.gadgetg

uru.in.laptop/index.h

tm 

http://philapedia_Min

t.com 
http://www.pcadv

isor.co.uk/reviews

/laptops/5/ 

http://www.gadgetsguru.i

n/laptop/index.htm 
http://www.cromare

tail.com/Laptops-c-

20.aspx 

http://indiatravelguid

e.com 
http://www.pcadv

isor.co.uk/advisor/

laptop/ 

http://www.blog.laptopm

ag.com/laptop-buying-

guide.htm 

http://www.junglee.

com/Laptops/b/803

540031 

http://nanital Travel 

guide.htm 
http://gadgets.ndt

v.com/laptops/rev

iews 

http://www.wikihow.com

/Choose-Which-Laptop-

to-Buy.htm 

 

http://www.flipkart.c

om/computers/lapto

p.htm 

 

http://aam_adami 

party.htm 
http://sony.vaio 

Flip13review.htm 



144 

 

8.3.2 SemCrawl Module 

 

SemCrawl Module crawls the web documents from web, filters the web pages which 

are not annotated with ont2logy and parse those filtered web documents into <S, P, 

O> format for inferential support.  

 

 
 

Figure 8.2 Crawler Module Result 

 

The Ontologies created were annotated with various pages and then using SemCrawl 

framework was crawled. The implementation results of crawling for SemCrawl 

Module are as shown in Figure 8.2. The results contain the crawled web pages which 

are annotated with ontology and the plain HTML pages are filtered out. The details of 

implementation of SemCrawl have been discussed in detail in Chapter 5. 

 

8.3.3 SemIndex Module  

 

SemIndex Module then indexes the crawled ontologies and semantically annotated 

web pages. One index consists of<Subject, Predicate, Object, Ontology>, and the 



145 

 

other index is of< HTML file, Ontology>. Figure 8.3 shows the output of parsed 

results of ontology. 

 

Figure 8.3 Ontology Parsing Result 

 

 

     Figure 8.4 Ontology Index 



146 

 

The output of parsing result of ontology into <S, P, O> is shown in Figure 8.4 which is a 

triple relation for a RDF statement indicating the relation between the three entities. The 

index created by SemIndex module has been shown in Figure 8.4. These indexes were stored 

in MYSQL database for storage. The DL queries were executed in Protégé for checking the 

consistency of the developed ontologies as depicted in Figure 8.5. 

 
 

Figure 8.5 Execution of Query in Protégé 

 

Figure 8.5 shows the execution of the query “Laptop_Processor” using DL Logic Query for 

Laptop_Specification ontology. The output of query is the subclasses of Laptop_Processor 

class. The details of SemIndex module has been discussed in detail in Chapter 6. 

 

8.3.4 SemEngine 

 

SemEngine searches results based on the ontology. A set of example queries were formed to 

analyze the results depicted in Table 8.2 

Table 8.2 Set of evaluation query 
 

Evaluation Query 

Query 1    Modem Specification 

Query2 Laptop seller sites 

Query 3 Laptop OS 

Query 4 Laptop Specification  



147 

 

 

Table 8.2 shows the set of query executed on the proposed Search System. The proposed 

SemEngine then searches the appropriate web pages annotated with ontology concepts 

related to query. Figure 8.6 shows the interface for the developed SemEngine system which is 

divided into three subsections; Specification Results, Seller Results, Reviews Results 

(subsection name synonym to ontology name), which indicates that for the query entered, if it 

matches the concepts related to the developed ontology, the web pages associated with  that 

ontology, are shown in that subsection. 

 

 

Figure 8.6 SemEngine Result Output 

 



148 

 

 The output for the query “laptop feedback” that retrieves all the resultant web pages related 

to the Laptop_Review ontology has been shown in Figure 8.6. 

 

Figure 8.7  Semengine result  for query”laptop seller sites” 

The output for the query “laptop Seller Sites” that retreives all the web pages which relates to 

Laptop_ selle rontology has been shown in Figure 8.7. 

This approach is advantageous in comparison to keyword based approaches in terms of 

• Semantically enriched information 

• Index size less in comparison of HTML indexing where whole HTML page is to be 

indexed 

 

The proposed approach is different from other approaches in the following aspects: 

• There is no need for parsing the complete HTML page 

• There is no need for creating Index for the whole HTML page as usually is done with 

traditional search engine techniques [38]. 



149 

 

• Unlike general Search Engines search results are based on the concepts contained in 

the ontology rather than the keywords of the HTML page. 

 

8.4   PERFORMACE EVALUATION OF THE SYSTEM SEMENGINE VS GOOGLE 

For the same set of queries, the performance of SemEngine has been compared with the 

performance of Google. Both the systems return a list of web pages in reference to a 

particular query. The difference between both systems is the representation techniques of the 

web pages. Google finds the irrelevant web pages as the result whereas SemEngine searches 

for a set of web pages which are annotated with semantic languages which well represents a 

web page. The system was compared for a set of 50 pages in the terms of the results returned 

on the basis of the evaluation metrics which are widely used in the field of information 

retrieval known as Precision, Recall and F-measure.  

Table 8.3 Experimental Evaluation of the System 

  Google SemEngine 

Evaluation 
Google 
Precision  

Ideal 
Precision 

Actual 
Precision 

Ideal 

Actual  
Recall 

Ideal  Actual  

Recall 
F-

measure 

F-

measure 

Laptop 

Feedback 
67% 100% 86% 100% 88% 100% 87% 

Laptop 

Review 
60% 100% 82% 100% 92% 100% 87% 

Laptop 

Seller sites 
80% 100% 92% 100% 90% 100% 91% 

Laptop 

Memory 
53% 100% 94% 100% 88% 100% 91% 

 

Table 8.3 shows the comparison of Google with the SemEngine. In ideal situation, if the 

ontologies are annotated with the web page correctly, the performance is 100%. In proposed 

research work, the ontologies are annotated with the web pages, but the web pages may or 

may not be always annotated correctly. Due to this reason, the actual performance is less than 

the performance in ideal situation.  

The precision curve for the SemEngine vs Google is as shown Figure 8.8. 

 



 

 

Figure 8.8 

Figure 8.8 shows a graph between Google vs SemEngine results for the Precision metrics. 

The graph shows that in ideal situations SemEngine curve is 100% whereas actual precision 

depends on the annotations of the web pages with the ontology and i

precision of Google. The ideal SemEngine system wherein the ontologies have all correct 

annotations; the curve for it is straight line.  

Figure 8.9 SemEngine Curve of Ideal vs Actual Recall

150 

Figure 8.8 SemEngine Precision Curve vs Google 

Figure 8.8 shows a graph between Google vs SemEngine results for the Precision metrics. 

The graph shows that in ideal situations SemEngine curve is 100% whereas actual precision 

depends on the annotations of the web pages with the ontology and is improved then the 

precision of Google. The ideal SemEngine system wherein the ontologies have all correct 

annotations; the curve for it is straight line.   

Figure 8.9 SemEngine Curve of Ideal vs Actual Recall 

 

 

 

Figure 8.8 shows a graph between Google vs SemEngine results for the Precision metrics. 

The graph shows that in ideal situations SemEngine curve is 100% whereas actual precision 

s improved then the 

precision of Google. The ideal SemEngine system wherein the ontologies have all correct 

 

 



 

Figure 8.9 shows Ideal vs Actual recall 

have recall value 100% for the query specified whereas in actual the curve varies and 

depends on the annotated web page.

 Figure 8.10 SemEngine F

Figure 8.10 represents the F-

which represents the symmetric curve.

The results for the developed system has better precision as compared to Google but the 

performance of the developed system depends on certain factors

• Coverage of the ontology concepts

• Scope of the ontology 

• Proper annotation of the web pages with the relevant ontology

 

 To validate the system support scalability, the numbers of queries were increased and the 

graph was plotted for precision depicted in Figure 8.11

151 

 

Figure 8.9 shows Ideal vs Actual recall value for SemEngine. In ideal situation SemEngine 

have recall value 100% for the query specified whereas in actual the curve varies and 

depends on the annotated web page. 

  

Figure 8.10 SemEngine F-Measure Ideal vs Actual Curve  

-measure metrics curve for SemEngine in ideal vs actual value 

which represents the symmetric curve. 

The results for the developed system has better precision as compared to Google but the 

performance of the developed system depends on certain factors- 

overage of the ontology concepts 

 

Proper annotation of the web pages with the relevant ontology 

To validate the system support scalability, the numbers of queries were increased and the 

graph was plotted for precision depicted in Figure 8.11 

value for SemEngine. In ideal situation SemEngine 

have recall value 100% for the query specified whereas in actual the curve varies and 

 

measure metrics curve for SemEngine in ideal vs actual value 

The results for the developed system has better precision as compared to Google but the 

To validate the system support scalability, the numbers of queries were increased and the 



 

Figure 8.11 Precision Graph for the increased number of queries

 

Figure 8.12 Recall Graph for the increas

With the increased number of queries Figure 8.11 and Figure 8.12 shows the precision and 

recall curve, for ideal vs. actual system, where ideal refers to system where all ontologies 

have been correctly annotated. As the number of queri

precision and recall is symmetric and not that varying which indicates that system supports 

scalability.  

  

40%

60%

80%

100%

5

R
e

ca
ll

152 

Figure 8.11 Precision Graph for the increased number of queries

Figure 8.12 Recall Graph for the increased number of queries

With the increased number of queries Figure 8.11 and Figure 8.12 shows the precision and 

recall curve, for ideal vs. actual system, where ideal refers to system where all ontologies 

have been correctly annotated. As the number of queries were increased the values of 

precision and recall is symmetric and not that varying which indicates that system supports 

10 15

Recall Curve

Ideal recall Actual Recall

QUERY

 

Figure 8.11 Precision Graph for the increased number of queries 

 

ed number of queries 

With the increased number of queries Figure 8.11 and Figure 8.12 shows the precision and 

recall curve, for ideal vs. actual system, where ideal refers to system where all ontologies 

es were increased the values of 

precision and recall is symmetric and not that varying which indicates that system supports 

20



 

Figure 8.13 F-measure graph for the increased number of queries

Figure 8.13 indicates the F-measure curve for SemEngine when the numbers of queries were 

increased as indicated, SemEngine functionality does not get affected by increasing the 

number of queries.   

Google is a general purpose search engine which fetches th

web and produces results based on the keyword matching whereas the developed SemEngine 

system fetches, crawls and indexes ontology annotated documents.  The results shows the 

developed system shows the relevant results but the 

the above mentioned factors. 

Comparative analysis of proposed SemEngine has been compared with Search engine as 

indicated in Table 8.3 

Table 8.4 Comparative analysis of Search Engines

Features Swoogle 

Description  Based on the user query, the 

concept is searched in the 

repository and the ranked 

ontologies are returned as 

result. 

153 

measure graph for the increased number of queries

measure curve for SemEngine when the numbers of queries were 

increased as indicated, SemEngine functionality does not get affected by increasing the 

Google is a general purpose search engine which fetches the simple HTML pages from the 

web and produces results based on the keyword matching whereas the developed SemEngine 

system fetches, crawls and indexes ontology annotated documents.  The results shows the 

developed system shows the relevant results but the performance of the system depends on 

 

Comparative analysis of proposed SemEngine has been compared with Search engine as 

Table 8.4 Comparative analysis of Search Engines 

Falcon Google 

Based on the user query, the 

concept is searched in the 

repository and the ranked 

ontologies are returned as 

Based on the 

keyword in the 

query the concept 

is searched in the 

repository and 

matching 

ontologies are 

Based on the user 

query the 

keyword is 

matched in the 

web page and the 

ranked web pages 

are returned as 

 

measure graph for the increased number of queries 

measure curve for SemEngine when the numbers of queries were 

increased as indicated, SemEngine functionality does not get affected by increasing the 

e simple HTML pages from the 

web and produces results based on the keyword matching whereas the developed SemEngine 

system fetches, crawls and indexes ontology annotated documents.  The results shows the 

performance of the system depends on 

Comparative analysis of proposed SemEngine has been compared with Search engine as 

SemEngine 

Based on the user 

query the 

keyword is 

matched in the 

web page and the 

ranked web pages 

are returned as 

Based on the user 

query the concept 

is searched in 

ontology 

annotated web 

page and the 

ranked web pages 



154 

 

returned. result. are returned as 

result. 

Results Ontology Ontology Web pages Web Pages 

Crawl 

Mechanism 

Crawl and discover document 

written in RDF, OWL. Uses 

three crawlers  

• Focussed crawler (for 

searching documents within a 

given website). 

• Google   crawler (for 

searching .rdf, .owl 

files). 

• Swoogle crawler to 

explore semantic link 

between SWDs. 

Crawl and discover 

document written 

in RDF, OWL. 

Uses RDF Crawler. 

Crawl and 

discover 

document written 

in HTML, XML. 

Uses Crawler 

“Googlebot”. 

Crawl and 

discover 

document written 

HTML associated 

with ontology. 

Uses SemCrawl  

Ranking 

Mechanism 

OntoRank Algorithm RankingScore[116] PageRank 

Algorithm 

SemRank 

Algorithm 

 

In this chapter the proposed SemEngine implemented in Java framework has been discussed. 

Jena framework is used for parsing semantic web documents to inference the underlying 

knowledge of the represented ontology.  

 



 155

CHAPTER IX 

 

9. CONCLUSION AND FUTURE WORK 

 

9.1 CONCLUSION 

 

SemEngine search system has been developed which searches the web contents based 

on the concepts represented in them by ontologies. Ontologies have been developed in 

the domain of laptop. The developed ontologies have been annotated with the relevant 

web pages. An architecture SemCrawl has been developed to crawl the web pages and 

filter the web pages which have no semantic annotation to it. An architecture 

SemIndex has been proposed to index the crawled repository which create two 

different indexes - <Subject, Predicate, Object, Ontology> and <HTML File, 

Ontology>. A framework SemRank has been proposed to rank the ontology and the 

associated web pages using Rank_Measure and Match_Measure. When the user 

enters the query the ranked ontology annotated web documents are returned as result. 

 

Following are the milestones that are achieved in this dissertation:  

 

1. Development of Ontology 

Ontologies were developed using Protégé development framework following the 

complete steps of ontology development lifecycle. Three ontologies were developed 

in the domain of laptop; i.e. Laptop_Seller, Laptop_Specification, Laptop_Feedback 

ontology.  

2. Framework for Crawling System 

A framework for crawling system; SemCrawl, has been proposed in order to crawl the 

web pages and to filter out the pages which are not annotated with ontology. 

 

 

 

 



 156

 

3. Framework for Indexing System 

SemIndex framework has been proposed for indexing the web pages which are 

annotated with ontology. The index created requires index size less in comparison to 

the index for the traditional indexing mechanism. The two indexes <S, P, O, 

Ontology> and <HTML file, Ontology> were created which helps in finding the 

relevant web pages related to the query. 

 

4. Framework for Ranking Systems 

A framework for ranking mechanism i.e. SemRank has been proposed to rank the web 

pages based on two dimensions of ranking. First dimension deals with first selecting 

the ontology which matches the query concepts; second dimension deals with ranking 

all the web pages related to the selected ontology. 

5. Framework for Search System 

A framework SemEngine has been proposed to list the ranked search results based on 

query. 

The objectives proposed were achieved. Domain specific approach has been followed 

for the development of ontology.  Concept based crawling, indexing and ranking has 

been used for developing the system. In order to ensure the practical implications the 

developed system, SemEngine supports the following features: 

 

• Scalability- The concepts can be added to developed ontologies which 

increase the vocabulary of the ontology supporting scalability feature for the 

developed system. 

• Extensibility-The developed system is extensible as any third party software 

can be easily incorporated. 

• Relevancy- The results are relevant in order to fulfil the user requirement. 

• Robustness- Ontologies are so designed that ontology revision will not 

change the foundedness of the resources that commit to an earlier version of 

the ontology. 



 157

• Improved Evaluation Metrics- It has been observed that if the pages are 

annotated correctly the performance of the proposed system is very high. 

 

The system has been implemented in Java using Eclipse Framework for project 

development. Jena Inference engine was used to infer the relationships for the RDF 

model of the represented ontology. For indexing the indexed data was stored in 

MYSQL server. 

The next section discusses the future scope of the proposed work. 

 

9.2 FUTURE SCOPE 

 

In this thesis, a search engine for ontologies has been designed and implemented that 

includes crawling, indexing and ranking for annotated web pages. Some of the 

possible extensions that can done in the future in this area are as follows: 

 

1. Automatic Annotation of web pages 

The web pages were annotated with manual annotation method. The research work 

can be carried in this direction for automatic annotation of web pages, although a lot 

of automatic annotation tools like Magpie and SHOE extension languages are 

available which have not proven to be that useful in the area of annotation. 

2. Recommender System 

Research can be pursued in the direction of development of Recommender system for 

E-commerce application and can be compared with the traditional system. 

3. Natural Language Query 

Research can be done for developing a system which can process the natural language 

query by matching with the concepts in the ontology. 

  

 

 

 

 



 158

4. Ontology Library 

 

Ontology library can be developed for the different applications and provided as a 

web service which can be reused by applications as it is or can be extended. Currently 

different systems are there for ontology reuse but that are not that user friendly. 

5. Ontology classification 

 

Different Ontology can be developed and research can be done to classify the 

ontology into different domains and can be made available as ontology library. 



 159 

 

     REFERENCES 

 

[1] T. Berners-Lee and M. Fischetti, Weaving the Web: The original design and 

ultimate destiny of the World Wide Web by its inventor, HarperInformation, 

2000. 

[2] V. Dhingra and K. K. Bhatia, “Towards Intelligent Information Retrieval on 

web,” in  International Journal of Computer Science and Engineering, Vol. 3, 

no. 4, April 2011. 

[3] T. A. Brooks, "Web search: how the Web has changed information retrieval," 

Information Research, Vol. 8, no. 3, 2003. 

[4] C. Manning, P. Raghvan, and H. Schütze. Introduction to Information Retrieval, 

Cambridge University Press, 2008. 

[5] K. S. Candan, H. Liu, and R. Suvarna, "Resource description framework: 

metadata and its applications," ACM SIGKDD Explorations Newsletter, Vol. 3, 

no. 1, 2001, pp. 6-19. 

[6] M. Kobayashi and K. Takeda, "Information retrieval on the web," ACM 

Computing Surveys (CSUR), Vol. 32, no. 2, 2000, pp. 144-173. 

[7] A. Arasu , J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan, "Searching 

the web," ACM Transactions on Internet Technology (TOIT), Vol.1, no. 1, 2001. 

[8] A. Heydon and M. Najork, "Mercator: A scalable, extensible web crawler," 

World Wide Web, Vol. 2, no. 4 , 1999, pp. 219-229. 

[9] D. Sullivan, "How search engines work," SEARCH ENGINE WATCH, at 

http://www. searchenginewatch. com/webmasters/work. html),on file with the 

New York University Journal of Legislation and Public Policy, 2002. 

[10]  G. Antoniou and F. van Harmelen. A semantic web primer. MIT press, 2004. 

[11] M. C. Daconta, L. J. Obrst, K. T. Smith. A Guide to Future of XML, Web 

Services and  Knowledge Management. Wiley Publications, 2003. 

[12] G. Sudeepthi, G. Anuradha and M. S. P. Babu, “A survey on Semantic Web 

Search Engines,”  International Journal of Computer Science Issues, Vol. 9, 

issue 2, no. 1, March 2012 

[13] M. Wilson and B. Matthews, "The semantic Web: prospects and challenges," in 

7th International Baltic Conference on Databases and Information Systems, 

2006, pp. 26-29.  



 160 

[14] F. van Harmelen, "The semantic web: What, why, how, and when," in IEEE 

Distributed Systems Online, vol. 5, no. 3, 2004. 

[15] G. Madhu, A. Govardhan, and T. V. Rajinikanth, "Intelligent semantic web 

search engines: a brief survey," International Journal of Web & Semantic 

Technology (IJWesT), Vol.2, no.1, January 2011. 

[16] K. Breitman, M. A. Casanova and W. Truszkowski, Semantic Web: Concepts, 

Technologies and Applications: Concepts, Technologies and Applications. 

Springer Science & Business Media,  2007. 

[17] N. Shadbolt, W. Hall, and T. Berners-Lee, "The semantic web revisited," 

Intelligent Systems, IEEE, Vol. 21, no. 3, 2006, pp. 96-101. 

[18] K. Janowicz and P. Hitzler, “Semantic Search on the Web,” IOS Press, Journal 

Interoperability, Usability, Applicability, 2010, pp. 1-7. 

[19] V. R.  Benjamins,  J. Contreras, O. Corcho and A. Gomez-Perez, “Six 

challenges for the Semantic Web,” In workshop KRR, 2002. 

[20] J. Euzenat, "Research challenges and perspectives of the Semantic Web," 

Intelligent Systems, IEEE , Vol.17, no. 5 ,2002, pp. 86-88.  

[21] L. W. Lacy. OWL: Representing information using the web ontology language. 

Trafford Publishing, 2005. 

[22] T. Finin,  A. Joshi, and V. Doshi, "Swoogle: A Semantic Web Search and 

Metadata Engine," In proceedings of the 13th international conference on 

Information and knowledge management, 2004, pp. 461-468. 

 [23] L. Ding, T. Finin, A.  Joshi, Y. Peng, R. Pan, and P. Reddivari, "Search on the 

semantic web," IEEE Computer society, Vol. 38, no. 10, Oct. 2005, pp. 62-69. 

[24] M. B. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. 

Postel, L. G. Roberts, and S. Wolff, "A brief history of the Internet," ACM 

SIGCOMM Computer Communication Review, Vol. 39, no. 5 , 2009, pp. 22-31. 

[25] J. Guice, "Looking backward and forward at the Internet," The Information 

Society, Vol.14, no. 3, 1998, pp.  201-211.  

[26] M. B. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. 

Postel, L. G. Roberts, and S. S. Wolff, "The past and future history of the 

Internet," Communications of the ACM,  Vol. 40, no. 2, 1997, pp. 102-108. 

[27] P. Atzeni, G. Mecca, and P. Merialdo, "To weave the web," In VLDB, vol. 97, 

1997, pp. 25-29. 



 161 

[28]   P. Andersen, “What is Web 2.0? ideas, technologies and implications for 

education,” Vol. 1, No. 1, Bristol, UK, JISC, 2007. 

[29]   J. desRivieres and J. Wiegand, "Eclipse: A platform for integrating 

development tools," IBM Systems Journal, Vol. 43, No. 2, 2004, pp.  371-383. 

[30]  S.Brin and L. Page, "The anatomy of a large-scale hypertextual Web search 

engine," Computer networks and ISDN systems, Vol. 30, no. 1, 1998, pp. 107-

117. 

[31] G. Ozsoyoglu, and A. Al-Hamdani, "Web information resource discovery: Past, 

present, and future," In Computer and Information Sciences-ISCIS, 2003, 

Springer Berlin Heidelberg, 2003, pp. 9-18. 

[32]   D. Sullivan, "Major search engines and directories," Search Engine Watch, 

2004. 

[33]   M. I. Mauldin, "Lycos: design choices in an Internet search service," IEEE 

Expert, Vol. 12, no.1, Jan 1997, pp. 8-11. 

[34] T. Seymour, D. Frantsvog, and S. Kumar, "History of search engines," 

International Journal of Management & Information Systems (IJMIS), Vol. 15, 

no. 4 , 2011, pp. 47-58. 

[35]  J. Battelle, "The birth of Google," WIRED-SAN FRANCISCO, Vol. 13, no. 8, 

2005. 

[36] M. Peshave and K. Dezhgosha, "How Search Engines Work: and a Web Crawler 

Application," PhD dissertation, University of Illinois Springfield, 2005. 

[37] A. Heydon and Marc Najork, "Mercator: A scalable, extensible web crawler," 

World Wide Web Vol. 2, no. 4 , 1999, pp. 219-229. 

[38] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan, "Searching 

the web," ACM Transactions on Internet Technology (TOIT), Vol. 1, no. 1 , 

2001 , pp. 2-43. 

[39] A. K. Sharma and A. Dixit, "Self adjusting Refresh Time based Architecture for 

incremental web crawler," Journal of Computer Science, Vol. 8, no. 12 , 2008, 

pp. 349-354. 

[40] J. Pokorný, "Web searching and information retrieval," Computing in Science & 

Engineering, Vol. 6, no. 4, 2004, pp. 43-48. 

[41]  W. B. Croft, D. Metzler, and T. Strohman. Search engines: Information 

retrieval in practice.  Addison-Wesley,  2010. 



 162 

[42] S. Brin, and L. Page, "The PageRank citation ranking: bringing order to the 

Web," 2006. 

[43] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," Journal 

of the ACM , Vol. 46, no. 5 ,1999, pp.  604-632. 

[44] A. Farahat, T. LoFaro, J. C. Miller, G. Rae, and L. A. Ward, "Authority rankings 

from HITS, PageRank, and SALSA: Existence, uniqueness, and effect of 

initialization," SIAM Journal on Scientific Computing Vol. 27, no. 4 ,2006,pp. 

1181-1201. 

[45] J. Hendler,  "Agents and the semantic web," IEEE Intelligent systems, Vol. 16, 

No. 2, 2001, pp.  30-37. 

[46] T. B. Lee, J. Hendler, O. Lassila, “The Semantic Web,” Scientific American 

Journal, Vol. 284, 2001, pp. 34-43. 

[47] S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M. Klein, J. Broekstra, M. 

Erdmann, and I. Horrocks, "The semantic web: The roles of XML and RDF," 

IEEE, Internet Computing, Vol. 4, no. 5 , 2000, pp. 63-73. 

[48] V. Dhingra, and K K Bhatia, "SemCrawl: Framework for Crawling Ontology 

Annotated Web Documents for Intelligent Information Retrieval," In Intelligent 

Distributed Computing, Springer International Publishing, 2015, pp. 213-223. 

[49] G. Antoniou and F.V. Harmelen. A semantic web primer. MIT press, 2004. 

[50] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau and J.Cowan, 

"Extensible Markup Language (XML)1.1(Second Edition)," W3C 

Recommendation, 2006. 

[51] G. Klyne and J. J. Carroll, "Resource Description Framework (RDF): Concepts 

and abstract syntax," W3C Recommendation, 2004. 

[52]  J. J. V. der Ham, F. Dijkstra, F. Travostino, H. M A Andree, and Cees TAM de 

Laat, "Using RDF to describe networks," Future Generation Computer Systems, 

Vol. 22, Issue 8, 2006, pp. 862-867. 

[53] P. Hitzler, M. Krotzsch, and S. Rudolph, Foundations of semantic web 

technologies. CRC Press,  2011. 

[54] D. Brickley and R.V Guha, “RDF Vocabulary Description Language 1.0: RDF 

Schema,” W3C Recommendation, February 2004 

[55] T.B. Lee, "Semantic web road map”, 1998. Available online at 

http://www.w3.org/DesignIssues/Semantic.html. 



 163 

[56] J. A. Gerber, A. Barnard,  and A. J. Van der Merwe, "Towards a semantic web 

layered architecture,” 2007. 

[57] R. Studer, S. Grimm, and A. Abecker, Semantic web services: concepts, 

technologies, and applications. Springer Science & Business Media, 2007. 

[58] K. S. Candan , H. Liu, and R. Suvarna, "Resource description framework: 

metadata and its applications," ACM SIGKDD Explorations Newsletter,  Vol. 3, 

no. 1 , 2001, pp.  6-19. 

[59] J. Greenberg, "Metadata and the world wide web," Encyclopedia of library and 

information science , Vol. 3, 2003, pp. 1876-1888. 

[60] Dublin Core Metadata Editor (DCDOT), 2000. 

http://www.ukoln.ac.uk/metadata/dcdot. 

[61]  The Protege Project,2000. http://protege.stanford.edu 

[62]  H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, "The Protégé 

OWL plugin: An open development environment for semantic web 

applications," In The Semantic Web–ISWC 2004, Springer Berlin Heidelberg, 

2004, pp. 229-243.   

[63]  S-Figueroa, M. Carmen, A. Gómez-Pérez, E. Motta, and A. Gangemi. Ontology 

engineering in a networked world. Springer Science & Business Media, 2012. 

[64]  P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann, M. d’Aquin, and E.   

Motta, "The neon ontology engineering toolkit," WWW ,2008. 

[65] S. Youn, and Dennis McLeod. "Ontology development tools for ontology-based 

knowledge management.", 2006. 

[66] Apollo Semantic Web Project. http://apollo.open.ac.uk/index.html 

[67]   J. C., Arpírez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez, 

"WebODE: a scalable workbench for ontological engineering," In Proceedings 

of the 1st international conference on Knowledge capture, ACM, 2001, pp. 6-

13. 

[68] N. Guarino, “Formal ontology in information systems”, Proceedings of the first 

international conference (FOIS'98), June 6-8, Trento, Italy. Vol. 46. IOS press, 

1998. 

[69] N. Guarino, Daniel Oberle, and Steffen Staab, "What is an Ontology?," In 

Handbook on ontologies. Springer Berlin Heidelberg, 2009,  pp. 1-17. 

[70] T. R. Gruber, "A translation approach to portable ontology specifications," 

Knowledge acquisition, Vol. 5, no. 2 , 1993, pp. 199-220. 



 164 

[71]  W.  N. Borst, Construction of engineering ontologies for knowledge sharing and 

reuse. Universiteit Twente, 1997. 

[72]  R. Studer, V. R. Benjamins and D. Fensel, "Knowledge engineering: principles 

and    methods," Data & knowledge engineering Vol. 25, no. 1, 1998, pp. 161-

197. 

[73] L. Yu. Introduction to the semantic web and semantic web services. CRC Press, 

2007. 

[74] K. K. Breitman, M. A. Casanova, and W. Truszkowski, "Ontology in computer 

science." Semantic Web: Concepts, Technologies and Applications ,2007,pp.  

17-34. 

[75]  N. F. Noy, D. L. McGuinness, “Ontology development 101 : A Guide to 

Creating your first ontology,” 2001. 

[76]  A. Eardley, Innovative Knowledge Management: Concepts for Organizational 

Creativity and Collaborative Design: Concepts for Organizational Creativity 

and Collaborative Design, IGI Global, 2010. 

[77]  A. Gómez-Pérez and Oscar Corcho, "Ontology languages for the semantic 

web," IEEE Intelligent Systems, Vol. 17, no. 1 , 2002, pp. 54-60. 

[78] P. D. Karp, V. K. Chaudhri, and J. Thomere, "XOL: An XML-based ontology 

exchange language,” 2000. 

[79] R. E. Kent, "Conceptual knowledge markup language: the central core,"2011. 

[80] J. Heflin, J. A. Hendler, and S. Luke, "SHOE: A Blueprint for the Semantic 

Web," Spinning the Semantic Web, 2003, pp. 1-19. 

[81] J. Heflin, J. Hendler, and S. Luke. "Shoe: A prototype language for the semantic 

web," Linköping Electronic Articles in Computer and Information Science  , 

2001. 

[82] J.Heflin, James Hendler, and Sean Luke, "SHOE: A knowledge representation 

language for internet applications," 1999. 

[83] S.Luke and J. Heflin, "SHOE 1.01. Proposed specification," Shoe Project ,2000. 

[84] Searching the Web with SHOE. Defence Technical Information Center, 2000. 

[85] D. Brickley and R. V. Guha, "Resource Description Framework (RDF) Schema 

Specification 1.0: W3C Candidate Recommendation  27 March 2000," 2000. 

[86] S. Decker, P. Mitra, and S. Melnik. "Framework for the semantic Web: an RDF 

tutorial." IEEE Internet Computing, Vol. 4, no. 6, 2000, pp. 68-73. 



 165 

[87] M. A Casanova, W. Truszkowski, and K. Breitman, "Semantic Web: Concepts, 

Technologies and Applications," NASA Monographs in Systems and Software, 

Springer , 2007. 

[88] D. Fensel, F. Van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-

Schneider, "OIL: An ontology infrastructure for the semantic web," IEEE 

intelligent systems, Vol. 16, no. 2 , 2001, pp. 38-45. 

[89] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M.  

Klein. "OIL in a nutshell." In Knowledge Engineering and Knowledge 

Management Methods, Models, and Tools, Springer Berlin Heidelberg, 2000, 

pp. 1-16. 

[90] F. van Harmelen and I. Horrocks, "FAQs on OIL: the ontology inference layer,"  

2000, pp. 69-72. 

[91] I. Horrocks, "DAML+OIL: A Description Logic for the Semantic Web," IEEE 

Data Eng. Bull. 25, no. 1, 2002, pp. 4-9. 

[92]  L. D. McGuinness and F. V. Harmelen, "OWL web ontology language 

overview," W3C recommendation 10, no. 10, 2004. 

[93] M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, 

D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein, "OWL web ontology 

language reference," W3C Recommendation February, Vol. 10 ,2004.  

[94]   H. Stuckenschmidt and F. van Harmelen, "Ontology languages for the Semantic 

Web," Information Sharing on the Semantic Web, 2005, pp. 45-61. 

[95]  R. Mizoguchi and K. Kozaki, "Ontology engineering environments," In 

Handbook on ontologies, Springer Berlin Heidelberg, 2009, pp. 315-336.. 

[96] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. 

Eriksson, N. F. Noy, and S. W. Tu, "The evolution of Protégé: an environment 

for knowledge-based systems development," International Journal of Human-

computer studies Vol. 58, no. 1, 2003, pp. 89-123. 

[97] O. Corcho, M. Fernández-López, A. Gómez-Pérez, and Ó. Vicente, "WebODE: 

An integrated workbench for ontology representation, reasoning, and exchange," 

In Knowledge Engineering and Knowledge Management: Ontologies and the 

Semantic Web, pp. 138-153. Springer Berlin Heidelberg, 2002. 

[98] J. C. Arpírez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez, 

"WebODE: a scalable workbench for ontological engineering," In Proceedings 



 166 

of the 1st international conference on Knowledge capture, ACM, 2001, pp. 6-

13. 

[99] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler, "Swoop: A web 

ontology editing browser," Web Semantics: Science, Services and Agents on the 

World Wide Web Vol. 4, no. 2 , 2006, pp. 144-153. 

[100] A. Kalyanpur,  E. Sirin,  B. Parsia, and J. Hendler, “Hypermedia inspired 

ontology engineering environment: Swoop,” In Proceedings of 3rd 

International Semantic Web Conference (ISWC-2004), Japan , 2004. 

[101]   E.Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A practical 

owl-dl reasoner," Web Semantics: science, services and agents on the World 

Wide Web Vol. 5, no. 2, 2007, pp. 51-53. 

[102] P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann, M. d’Aquin, and E.   

Motta, “The neon ontology engineering toolkit," WWW, 2008. 

[103]  NeOn toolkit Project. http://www.neon-project.org/. 

[104] A. Adamou, R. Palma, P. Haase, E. M. Ponsoda, G. Aguado de Cea, A. Gómez-

Pérez, W. Peters, and A. Gangemi, "The NeOn ontology models," In Ontology 

Engineering in a Networked World, Springer Berlin Heidelberg, 2012, pp. 65-

90. 

[105] WordNet web resource. http//wordnet.princeton.edu/. 

[106]  H.Boley, S. Tabet, and G. Wagner, "Design Rationale for RuleML: A Markup 

Language for Semantic Web Rules," In SWWS, Vol. 1, pp. 381-401. 2001. 

[107] I.Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. 

"SWRL: A semantic web rule language combining OWL and RuleML," W3C 

Member submission , 2004. 

[108]  C. Patel, K. Supekar, Y. Lee, and E. K. Park, "OntoKhoj: a semantic web portal 

for ontology searching, ranking and classification," In Proceedings of the 5th 

ACM international workshop on Web information and data management, 2003, 

pp. 58-61. 

[109]  K. Supekar, C. Patel, and Y. Lee, "Characterizing Quality of Knowledge on 

Semantic Web," In FLAIRS Conference, 2004, pp. 472-478. 

[110] Dmoz Open directory project home page. http://www.dmoz.org 

[111]  L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, 

and J. Sachs, "Swoogle: a search and metadata engine for the semantic web," In 



 167 

Proceedings of the thirteenth ACM international conference on Information and 

knowledge management, 2004, pp. 652-659. 

[112] T. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari, A. Java, and Y. Peng, "Swoogle: 

Searching for knowledge on the Semantic Web," In Proceedings of the national 

conference on artificial intelligence, Vol. 20, no. 4, 2005. 

[113] L.Ding, and T. W. Finin, "Boosting semantic web data access using Swoogle," 

In  AAAI, vol. 5, 2005, pp. 1604-1605. 

[114] Swoogle Search Engine.http://swoogle.umbc.edu/ 

[115] G. Cheng, W. Ge, Y. Qu, “Falcons: Searching and browsing Entities on the 

Semantic Web,” WWW 2008, China. 

[116] Y. Qu, G. Cheng, “Falcon Concept Search: A Practical Search Engine for Web 

ontologies,” IEEE Transactions on System, Man and Cybernetics, Vol No. 41, 

No 4, July 2011. 

[117] Apache Lucene, "A high-performance, full-featured text search engine library," 

URL: http://lucene. apache. org ,2005. 

[118] Y. Zhang, W. Vasconcelos, and D. Sleeman, "Ontosearch: An ontology search 

engine," In Research and Development in Intelligent Systems XXI, Springer 

London, 2005, pp. 58-69. 

[119] J. Bailey, F. Bry, T. Furche, S. Schaffert, “Semantic Web Query Languages,” 

Encyclopedia of Database Systems, Springer, 2009, pp. 2583-2586. 

[120]  Z. Zhang and J. A. Miller, "Ontology query languages for the semantic web: A 

performance evaluation," PhD diss., University of Georgia, 2005. 

[121] R. Fikes, P. Hayes, and I. Horrocks, "OWL-QL—a language for deductive 

query answering on the Semantic Web," Web semantics: Science, services and 

agents on the World Wide Web Vol. 2, no. 1 , 2004, pp. 19-29. 

[122] J. Broekstra, and A. Kampman, "Serql: An rdf query and transformation 

language,"   Submitted to the International Semantic Web Conference, 

ISWC,2004.  

[123] J. Broekstra, and A. Kampman, "SeRQL: a second generation RDF query 

language," In Proc. SWAD-Europe Workshop on Semantic Web Storage and 

Retrieval, pp. 13-14. 2003. 

[124] L. Ding, T. Finin, A. Joshi, Y. Peng, R. Pan, and P. Reddivari. "Search on the 

semantic web," Department of Computer Science and Electrical engineering, 



 168 

University of Maryland Baltimore County, Baltimore, Tech Rep. TR CS-05-09, 

2005, pp.  62-69. 

[125] K.S. Esmaili, and H. Abolhassani, "A Categorization Scheme for Semantic Web 

Search Engines," In AICCSA, 2006, pp. 171-178.  

[126] M.Hepp, K. Siorpaes, and D. Bachlechner, "Towards the semantic web in e-

tourism: can annotation do the trick?," 14th European Conference on 

Information System (ECIS), 2006. 

[127] U. Shah,  T. Finin, A. Joshi, R. S. Cost, and J. Matfield, "Information retrieval 

on the semantic web," In Proceedings of the eleventh international conference 

on Information and knowledge management, ACM, 2002, , pp. 461-468.   

[128] S. L. Tomassen, "Conceptual Ontology Enrichment for Web Information 

Retrieval," PhD dissertation, Norwegian University of Science and Technology, 

2011. 

[129] R. Navigli, "Word sense disambiguation: A survey." ACM Computing Surveys 

(CSUR) Vol. 41, no. 2 , 2009. 

[130]  D. Yarowsky, "Unsupervised word sense disambiguation rivaling supervised 

methods," In Proceedings of the 33rd annual meeting on Association for 

Computational Linguistics,  1995. pp. 189-196. 

[131] D.E.Goldschmidt and M. Krishnamoorthy, "Architecting a search engine for the 

semantic web," In Proc. of the AAAI workshop on contexts and ontologies: 

theory, practice and applications, 2005. 

[132] H. Team, “Semantic Search Technology–making sense of the worlds 

Information,” White paper Jan , 2010. 

[133] A. Hands, "Duckduckgo http://www. duckduckgo. com or http://www. ddg. 

gg." Technical Services Quarterly, Vol. 29, no. 4, 2012, pp. 345-347. 

[134] K. Dahlgren, "Technical overview of Cognition’s semantic NLP (as applied to 

search)," ReCALL , 2007. 

[135] A. Radhakrishnan, “SenseBot: Summarizing Search Engine results,” Search 

engine Journal, 2007.  http://www.sensebot.net/news.htm. 

[136] T. Converse, R. M. Kaplan, B. Pell, S. Prevost, L. Thione, and C. Walters, 

"Powerset’s Natural Language Wikipedia Search Engine," Wikipedia and 

Artificial Intelligence ,2008. 



 169 

[137] M.d'Aquin, C.Baldassarre, L.Gridinoc, M.Sabou, S.Angeletou, and E. Motta, 

"Watson: Supporting next generation semantic web applications," in 

Proceedings IADIS International Conference WWW/Internet, 2007, pp.363-171. 

[138] M. Weiten, Ontostudio as a ontology engineering environment. Springer Berlin 

Heidelberg, 2009. 

[139] C. Golbreich, "Combining rule and ontology reasoners for the semantic web," 

In Rules and rule markup languages for the semantic Web, Springer Berlin 

Heidelberg, 2004, pp. 6-22. 

[140] E. Sirin and B. Parsia, "SPARQL-DL: SPARQL Query for OWL-DL," In 

OWLED, Vol. 258, 2007. 

[141]  D.Tsarkov and I. Horrocks, "FaCT++ description logic reasoner: System 

description," In Automated reasoning, Springer Berlin Heidelberg, 2006, pp. 

292-297. 

[142] V. Dhingra and K. K. Bhatia, “Development of ontology in Laptop Domain for 

Knowledge Representation,” In International Conference on Information and 

Communication Technologies, ICICT, Elsevier Procedia, 2014. 

[143] V. Dhingra and K. K. Bhatia, "SemIndex: Efficient indexing mechanism for 

ontologies," In IEEE Contemporary Computing (IC3), 2014 Seventh 

International Conference, 2014, pp. 340-345. 

[144]  L. Ding,  P.Kolari, Z. Ding, and S. Avancha, "Using ontologies in the semantic 

web: A survey," In Ontologies, Springer US, 2007, pp. 79-113. 

[145]  DAML Library. http://www.daml.org/ontologies/ 

[146] Ontolingua Library. http://www-ksl-svc.stanford.edu:5915/ 

[147] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, and H. 

Wang,"The Manchester OWL Syntax," In OWLed, Vol. 216, 2006. 

[148] L.Dodds, "Slug: A semantic web crawler," In Proceedings of Jena User 

Conference, 2006.  

[149] H. Dong, F. K. Hussain, and E. Chang, "A semantic crawler based on an 

extended CBR algorithm," In On the Move to Meaningful Internet Systems: 

OTM 2008 Workshops, Springer Berlin Heidelberg, 2008, pp. 1076-1085. 

[150] L.Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, and P. Kolari, "Finding and ranking 

knowledge on the semantic web," In The Semantic Web–ISWC 2005, Springer 

Berlin Heidelberg, 2005, pp. 156-170. 



 170 

[151] S.K. Staab, K. Apsitis, S. Handschuh, and H. Oppermann, "Specification of an 

RDF Crawler," 2004. 

[152] M.Biddulph, “Crawling the Semantic Web. BBC London,” United Kingdom, 

2003. 

[153] A. Chakravarthy, "Mining the semantic web," 2005. 

[154] V. Jalali, M. Zhou, and Y. Wu, “A study of RDF based data management 

techniques,” Lecture Notes in computer Science, Vol. 6897, 2011, pp. 366-378. 

[155] A.  Harth and S. Decker, “Optimized index structures for querying RDF from 

the web,”In Proceedings of the LA-Web Congress, Nov.2005. 

[156] D. Beckett, “The design and implementation of Redland RDF application 

framework,”Proceedings of 10
th

 International Conference on World Wide 

Web, USA, 2001. 

[157] S. Harris, N. Gibbins, “3 store: Efficient bulk RDF Store,” In proceedings of 

PSSS’03, 2003, pp. 1-15. 

[159]  A. Reggiori, “RDFStore Perl API for RDF Storage,” 2002. 

[160] D. J. Abadi, A. Marcus, S. Madden, K. Hollenbach, “Scalable semantic web 

data management using vertical partitioning,” In VLDB, 2007, pp. 411-422.  

[161] D. J. Abadi, A. Marcus, S. Madden, K. Hollenbach, “SW-Store: a vertically 

partioned DBMS for semantic web data management”, VLDB J., 2009. 

[162]   K. Wilkinson, "Jena property table implementation,“Jena Property Table 

Implementation”, In SSWS, 2006. 

[163]  K. Wilkinson, C. Sayers, H.  Kuno, D. Reynolds, “Efficient RDF Storage and 

Retrieval in Jena”, SWDB 2003. 

[164]  S. Alexai, V. Christophides, G.  Karvounarki, D. Plxousakis, K. Tolle, 

“RDFSuite: Managing Voluminous RDF Description bases”, 2nd International 

Workshop on Semantic Web (SemWeb’01), Hong Kong, 2001. 

[165]  J.  Broekstra , A.  Kampman , F. Harmelen, “Sesame: A Generic Architecture 

for Storing and Querying RDF and RDFSchema”, Proceedings of the First 

International Semantic Web Conference, 2002, pp.  54-68. 

[166]  S. Harris, N. lamb, N. Shadbol, “4 store: The design and implementation of 

clustered RDF store,” in SSWS2009: Proceedings of 5th International 

Workshop on scalable Semantic Web knowledge base Systems, 2009. 



 171 

 [167]  T. Finin and Li Ding, "Search engines for semantic web knowledge," Darpa 

Agent Markup  Language (DAML) tools for supporting intelligent annotation, 

sharing and retrieval, 2007. 

[168] H. Alani, C. Brewster, and N. Shadbolt, "Ranking ontologies with 

AKTiveRank," In The Semantic Web-ISWC 2006, Springer Berlin Heidelberg, 

2006, pp. 1-15. 

[169] H. Alani and C. Brewster, "Metrics for ranking ontologies," In Proceedings of 

the 4
th

 International EON Workshop and the 15
th

  International World Wide 

Web conference, Edinburgh, UK. 

[170] M. Sabou, V. Lopez, and E. Motta, "Ontology selection for the real semantic 

Web: How to cover the queen’s birthday dinner?," In Managing Knowledge in 

a World of Networks, Springer Berlin Heidelberg, 2006, pp. 96-111. 

[171]   T. Composer, "TOPBRAID COMPOSER 2007 Features and getting Started 

Guide Version 1.0", created by TopQuadrant, US, 2007.  

[172]   S.Tartir and I. B. Arpinar ,”Ontology Evaluation and Ranking using OntoQA,”  

in  Proceedings of 1st IEEE International Conference on Semantic Computing, 

USA, Sep. 2007, pp. 185-192. 

[173] Y. Lei , V. Uren and  E. Motta, “SemSearch: A search engine for the semantic 

web,” in Proceeding of the 15
th

 International Conference on MANAGING 

Knowledge in the World of Network (EKAW),  Podebrady, Czech Republic, 

2006, pp: 238-245. 

[174] A. Hogan, A. Harth and S. Decker, “ReConRank: A Scalable Ranking Method 

for Semantic Web Data with Context,” In Proceedings of the 2
nd

 Int. Workshop 

on Scalable Semantic Web Knowledge Base Systems (SSWS 2006), The 5th Int. 

Semantic Web Conf., Athens, Georgia, USA,2006. 

[175] P. Buitelaar, T. Eigner, & T. Declerck, “OntoSelect: A Dynamic Ontology 

Library with Support for Ontology Selection,” Proceedings of the Demo 

Session at the International Semantic Web Conference.  Hiroshima, Japan, 

2004. 

[176] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, "OilEd: a reason-able 

ontology editor for the semantic web," In KI 2001: Advances in Artificial 

Intelligence, pp. 396-408, Springer Berlin Heidelberg, 2001. 



 172 

[177] Y. Sure, J. Angele, and S.Staab, "OntoEdit: Guiding ontology development by 

methodology and inferencing," In On the Move to Meaningful Internet Systems, 

Springer Berlin Heidelberg, 2002, pp. 1205-1222. 

[178] L. Miller, A. Seaborne, and A. Reggiori, "Three implementations of SquishQL, 

a simple RDF query language," In The Semantic Web—ISWC 2002, Springer 

Berlin Heidelberg, 2002, pp. 423-435. 

[179]  A. Seaborne, "Rdql-a query language for rdf," W3C Member submission, 2004. 

[180] M. J. O 'Connor, and A. K. Das, "SQWRL: A Query Language for OWL," in 

OWLED, Vol. 529, 2009. 

[181] Y. Zhang, W. Vasconcelos, and D. Sleeman, "Ontosearch: An ontology search 

engine," In Research and Development in Intelligent Systems XXI, Springer 

London, 2005, pp. 58-69. 

 

 
 


