January, 2023

B. Tech. (CE) Re-Appear MATHEMATICS-III SEMESTER MATHEMATICS-III (HAS-203)

Time: 3 Hours

Max. Marks:60

Instructions:

- 1. It is compulsory to answer all the questions (2 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- Q1 (a) Explain Fourier transform. (2)
 - (b) State Convolution theorem for Fourier integrals. (2)
 - (c) Find Fourier series representing f(x) = x, $0 < x < 2\pi$. (2)
 - (d) Write DIRICHLET'S CONDITIONS for Fourier series. (2)
 - (e) Evaluate the following integral: (2)

$$\oint_C \frac{z-3}{z^3+z} dz, \ C: |z| = 2.$$

- (f) State necessary condition for analytic function. (2)
- (g) Explain singularity of a complex function with example. (2)
- (h) If A and B are independent, $P[A] = \frac{1}{3}$ and $P[\overline{B}] = \frac{1}{4}$, find $P[A \cup B]$. (2)
- (i) If $f_1(x)$ and $f_2(x)$ are probability density functions, show that $(\theta + 1) f_1(x)$ (2) $\theta f_2(x)$, $0 < \theta < 1$, is probability density function.
- (j) Define optimal feasible solution and basic feasible solution. (2)

PART-B

- Q2 Expand the function $f(x) = x \sin x$, as Fourier series in the interval $-\pi < x < \pi$ (10) And deduce that $\frac{1}{13} - \frac{1}{35} + \frac{1}{57} - \frac{1}{7.9} + ... = \frac{1}{4}(\pi - 2)$.
- Q3 (a) Obtain half range cosine series for $f(x) = x^2$ in the interval $0 \le x \le \pi$. (6)
 - (b) Show that the function $f(z) = |z|^2$ is continuous everywhere but nowhere (4) differentiable except at the origin

Determine the analytic function
$$f(z) = u + iv$$
, if $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and $f\left(\frac{\pi}{2}\right) = 0$.

- Q5 (a) Find radius of convergence of the series $f(z) = \sum_{n=1}^{\infty} (n+a^n)z^n$, where a is a complex constant. (5)
 - (b) Evaluate the integral $I = \int_{0}^{2\pi} e^{\cos \theta} \cos(\sin \theta) d\theta$. (5)
- Q6 (a) An urn contain 10 white and 3 black balls, while another urn contains 3 white and 5 black balls. Two are drawn from the first urn and put into the second urn and then a ball is drawn from the latter. What is the probability that it is a white ball?
 - (b) Is the sum of two independent binomial variates a binomial variate? If not, what are the conditions under which it is so?
- Q7 Apply dual simplex method, solve the following LPP

(10)

Min.
$$Z = 5x_1 + 6x_2$$

Subject to the constraints

$$x_1 + x_2 \ge 2$$
, $4x_1 + x_2 \ge 4$, and $x_1, x_2 \ge 0$.
