January 2023
 B.Tech- III SEMESTER
 Theory of Automata \& Computation (CE-209C)

Time: 3 Hours
Max. Marks:75
Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Define Kleene closure and Positive closure.
(b) Define NDPDA.
(c) What are undecidable problems? Give an example.
(d) Write a regular expression for the language that accepts the strings of even (1.5) length.
(e) What do you mean by context sensitive languages?
(f) Compare the computational power of a pushdown automata and 'a finite (1.5) automata.
(g) Define grammar and language.
(h) What is a recursively enumerable language?
(i) What is the halting problem of a turing machine?
(j) Write the closure properties of regular sets.

PART-B

Q2 (a) Convert the following finite automata to it's corresponding regular expression (10) using Arden's theorem:

(b) Explain Chomsky Hierarchy of formal languages in detail.

Q3 (a) Explain pumping lemma for regular expressions.

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{bS} \mid \mathrm{BcA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{BBa} \\
& \mathrm{~B} \rightarrow \mathrm{ba} \mid \epsilon \tag{15}
\end{align*}
$$

Q4 Define Pushdown Automata. Construct a PDA for 0 n 1 m 2 m 3 where $\mathrm{n}, \mathrm{m} \geq 1$.
Q5 (a) Write a regular expression for the language that accepts all the strings of 0's and 1's such that
i) the strings begin with 1 and do not contain a substring 001 .
ii) The strings start with 00 or end with 00 .
(b) What are parse trees? Explain the concept of ambiguity in CFG.

Q6 (a) Differentiate between Mealy machine and Moore machine. Design a Mealy (10) machine to find out 2's complement of a binary number.
(b) Check if the following grammar is ambiguous or not:

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{aB} / \mathrm{bA} \tag{5}\\
& \mathrm{~A} \rightarrow \mathrm{aS} / \mathrm{bAA} / \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{bS} / \mathrm{aBB} / \mathrm{b}
\end{align*}
$$

Also determine if it accepts the string "aaabbabbba".
Q7 Design a turing machine that accepts the strings containing equal no. of a's and (15) b's.

