(b) Find the radius of curvature of the curve $x y^{2}=b^{3}-x^{3}$ \qquad at $(b, 0)$.

321107
7. (a) Find the maximum and minimum values of $f(x, y)=$ $x^{2}-x y+y^{2}-2 x+y$.
(b) If $\mathrm{y}=\sin \left(m \sin ^{-1} x\right)$. Then prove that $\left(1-x^{2}\right) y_{2}-x y_{1}$ $+m^{2} y=0$ and also deduce that $\left(1-x^{2}\right) y_{n+2}-(2 n+1)$ $x y_{n+1}-\left(n^{2}-m^{2}\right) y_{n}=0$.

January, 2023

B.Sc. (Physics/Chemistry) Re-Appear Ist Semester CALCULUS (OMTH-101)

Time : 3 Hours]
[Max. Marks : 75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find all the second-order partial derivative of $f(x, y)=$ $x^{3}+y^{3}-3 x-12 y+20$.
(b) Calculate $\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x^{2}-9}$.
(c) Find the radius of curvature of the curve $x=e^{t} \cos t$, $y=e^{t} \sin t, z=\frac{t^{2}}{2}$ at $t=0$.
(d) State Euler's theorem for Homogeneous functions.
(e) Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}$.
(f) Change the order of integration in $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$.
(g) Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d x d y d z$.
(h) Evaluate $\int_{0}^{1} x^{11}(1-x)^{5} d x$.
(i) What are Taylor's and Maclaurin's Series for one variable.
(j) Find all the stationary points of the function $f(x, y)$ $=3 x^{2}-2 x y+y^{2}-8 y$.

PART-B

2. (a) Find the value of the constant k, if possible, that will make the function $f(x)$ continuous everywhere.
(i) $f(x)= \begin{cases}7 x-2, & x \leq 1 \\ k x^{2}, & x>1\end{cases}$
(ii) $f(x)= \begin{cases}2 x+k, & x>2 \\ k x^{2}, & x \leq 2\end{cases}$
(b) Using Maclaurin's series expand $\tan x$ up to the term containing x^{5}.
3. (a) If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$.
(b) Find the shortest and longest distance from the point $(1,2,-1)$ to the sphere $x^{2}+y^{2}+z^{2}=24$, using Lagrange's method of constrained maxima and minima.
4. The area bounded by $y^{2}=4 x$ and the line $x=4$ is revolved about the line $x=4$. Find the volume of the solid of revolution.
5. (a) Find the volume of the tetrahedron bounded by the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ and the coordinate planes (i.e. $x=0, y=0, z=0$).
(b) Using beta and gamma function evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d \theta$.
6. (a) Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ about the major axis.
