(b) Evaluate $\iint_{\mathrm{R}} y d x d y$, where R is the region bounded by
\qquad

January, 2023

B.Sc. (Physics) Ist Semester

CALCULUS
Paper-OMTH-101A
Time : 3 Hours]
[Max. Marks : 75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x}$.
(b) Write nth derivative of $\frac{1}{2 x+1}$.
(c) Find asymptotes parallel to co-ordinate axes of $y=e^{x}$.
(d) Find $\frac{\partial u}{\partial x}$ if $u=\log \left(x^{2}+y^{2}\right)$.
(e) If $r=\sqrt{x^{2}+y^{2}}$ and $\theta=y / x$, then evaluate $\frac{\partial(r, \theta)}{\partial(x, y)}$.
(f) Write the surface of solid generated by the revolution about the x-axis, of the area bounded by the curve $x=f(t), y=\phi(t)$, the x - axis and the ordinates at the points, $t=a, t=b$.
(g) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$.
(h) Evaluate $\int_{0}^{1} x^{7}(1-x)^{6} d x$.
(i) Change into polar co-ordinates (r, θ), the integral

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d y d x .
$$

(j) Define Gamma function and write value of $\sqrt{3 / 2}$.
$(10 \times 1.5=15)$

PART-B

2. (a) If $y=\left[\log \left(x+\sqrt{1+x^{2}}\right)\right]^{2}$, prove that $\left(1+x^{2}\right) y_{n+2}+$ $(2 n+1) x y_{n+1}+n^{2} y_{n}=0$.
(b) Expand by Maclaurin's theorem $\frac{e^{x}}{1+e^{x}}$ as far as x^{3}.
$(71 / 2+71 / 2)$
3. (a) Find all the asymptotes of the curve $x(y-x)^{2}-x(y-x)$ $=2$.
(b) Find the radius of curvature for the curve $x^{2 / 3}+y^{2 / 3}=$ $a^{2 / 3}$ at (x, y).
($7^{1 / 2}+7^{1 / 2}$)
4. (a) State Euler's theorem on homogeneous functions. If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then find value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.
(b) If $u=x^{2} y^{3}, x=\log t, y=e^{t}$ then find $\frac{d u}{d t} . \quad(71 / 2+71 / 2)$
5. (a) Expand $e^{x} \sin y$ in power of x and y as far as terms of third degree.
(b) Find the value of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x-axis.
6. (a) Find the surface of the solid generated by the revolution of the ellipse $x^{2}+4 y^{2}=16$ about its major -axis.
