Total Pages: 6

Roll No.

325103

January 2023 B.Sc. (Life Sciences) Ist SEMESTER Conceptual Organic Chemistry (BLS 103)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Explain the order of stability of various conformations of cyclohexane. (1.5)
 - (b) Classify the following as electrophiles and nucleophiles with explanation: SF₄,: CC1₂, SO₃. (1.5)
 - (c) Which is more stable and why between 1,3-pentadiene and 1,4-pentadiene? (1.5)
 - (d) Arrange and explain the order of nucleophilicity of halide ions in water. (1.5)
 - (e) What are the products obtained when 2-chloro-l-phenylpropane undergoes dehydrohalogenation? What is the major product and why? (1.5)

- Why is acylium ion generated in Friedel craft acylation more stable than ordinary carbocations? (1.5)
- (g) In 1,3-butadiene, 1,4 addition occurs slower than 1,2 addition at low temperatures. Explain.
- (h) Justify the statement that aryl halides and vinyl halides show low reactivity towards nucleophilic substitution reaction compared to alkyl halides. (1.5)
- Why nitration of toluene is much faster compared to the nitration of nitrobenzene? Name the product formed (1.5)in each case.
- Which one is more reactive towards nucleophilic (1.5)substitution and why C₆H₅CI or CH₃CH₂Cl.

PART-B

- Carry out the following conversions: 2.
 - Convert secondary alcohol to ketone.
 - Ethanol to ethanal. (ii)
 - (iii) 1-propyne to 2-Bromopropene.
 - (iv) Propanoyl chloride propanal.
 - (10)Benzene to Toluene.
 - (b) Explain why alkenes undergo electrophilic addition while benzene undergoes electrophilic substitution (5) reaction.
- With the help of a mechanism explain Friedel Craft 3. (3)acylation in benzene.

2

- (b) Discuss the various conformations of 1,2-ethanediol in Newman projection formulae and explain their relative order of stability. (3)
 - Explain the following:
 - (i) Explain aldehydes and ketones undergo nucleophilic addition reaction.
 - (ii) S_N^2 reactions of alkyl halides proceed with complete stereochemical inversion. Explain the mechanism.
 - (iii) Why o- and m-chloronitrobenzene undergo faster (9)nucleophilic substitution?
- Complete the following reactions:

(i)
$$H_3C$$
 $DCOCH_3$ $AlCl_3$ Δ

(ii)
$$CH_2 \stackrel{COOH}{\longleftarrow} \stackrel{\Delta}{\longrightarrow} 13K$$

(iii)
$$+ CH_3COONa$$
 $(CH_3CO)_2O$

$$(v)$$
 CH_2OH HIO_4 CH_2OH

[P.T.O.

(vi)
$$CH_3$$
— CH — CH_3 + OH OH OH OH

(vii)
$$CH_3CH \equiv CH$$
 $\xrightarrow{\text{dil } H_2SO_4}$ Hg_2SO_4 (14)

- (b) Write down the product(s) obtained on dehydration of 3,3,-dimethylbutan-2-ol. (1)
- 5. (a) An organic compound A(C₁₆H₁₆) on ozonolysis gives only one product B(C₈H₈O). Compound B on reaction with iodine in presence of sodium hydroxide gives sodium benzoate. B also reacts with hydrazine in presence of KOH to give C (C₈H₁₀). Deduce the structures of A, B, and C. Give equations and reactions involved. Also explain the mechanism of conversion of B to sodium benzoate. (5)
 - (b) Which of the following compound exhibit geometrical isomerism? Assign E/Z configuration to them.
 - (i) $H_3C \equiv CH_3$

(ii)
$$H_3C$$
 CH_3 CI

(iv)
$$H_{2}N$$
 $CO_{2}H$ Br

$$(v) \qquad \begin{array}{c} Br \\ \\ Cl \end{array}$$
 (5)

(c) Convert in Fischer and assign R/S configuration. (5)

(i)
$$H \xrightarrow{CH_3} H$$
 CH_3
 Br

$$(v) \quad \begin{array}{c} H \\ H_3C \\ \end{array} F$$

- 6. (a) Write short notes on:
 - (i) Directive influence of substituents in the benzene.
 - (ii) Saytzeff s rule.
 - (iii) Electrolytic reduction.
 - (iv) Resolution of the racemic mixture by the salt formation method.
 - (v) Specific and molar rotation. (10)
 - (b) The rate of addition of HCN to ketones to form cyanohydrin is increased by the addition of a trace amount of NaCN. Explain with a mechanism. (5)
- 7. Explain with mechanism following reactions:
 - (a) Iodoform reaction.
 - (b) Aldol condensation.
 - (c) Clemmensen reduction.
 - (d) Hydroboration-oxidation.
 - (e) Oppenaur oxidation. (15)