January 2023
 M. Sc. Mathematics - I Semester Ordinary Differential Equations (MATH21-703)

Time: 3 Hours

Max. Marks: 75

Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Solve the differential equation $y^{2} d x+2 x y d y=0$.
(b) Check if the solutions $e^{x}, e^{-x}, e^{2 x}$ of a differential equation are linearly independent or not.
(c) Find the singular points of the differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}+2\right) y=0$.
(d) Give an example of a system of two linear differential equations with two unknown functions in normal form.
(e) Find the adjoint equation of $(2 t+1) \frac{d^{2} x}{d t^{2}}+t^{3} \frac{d x}{d t}+x=0$.
(f) Determine the nature of the critical point $(0,0)$ of the system

$$
\begin{equation*}
\frac{d x}{d t}=2 x+4 y, \frac{d y}{d t}=-2 x+6 y \tag{1.5}
\end{equation*}
$$

(g) State Lipschitz condition w.r.t y.
(h) Explain negative semi-definite function with an example.
(i) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}(x-2)^{n}$.
(j) What is the degree of the $\operatorname{DE}\left(\frac{d^{3} y}{d x^{3}}\right)^{2 / 3}+\left(\frac{d^{3} y}{d x^{3}}\right)^{3 / 2}=0$?

PART-B

Q2 (a) Find the power series solution in powers of $(x-1)$ of the initial value problem

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+2 y=0, y(1)=1, y^{\prime}(1)=2 \tag{7}
\end{equation*}
$$

(b) Solve the following DE in series of $x=0$

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0 \tag{8}
\end{equation*}
$$

Q3 (a) Find the third approximation of the solution of $\frac{d y}{d x}=2-\frac{y}{x}$ by Picard's method, wherd $y(1)=2$.
(b) State and prove Cauchy-Peano existence theorem.

Q4 (a) Find the general solution of the following linear system

$$
\begin{align*}
& \frac{d x}{d t}=3 x+2 y \tag{7}\\
& \frac{d y}{d t}=-5 x+y \tag{8}
\end{align*}
$$

(b) State and prove Sturm separation theorem.

Q5 (a) Transform the following equation into an equivalent self-adjoint equation

$$
\begin{equation*}
f(t) \frac{d^{2} x}{d t^{2}}+g(t) x=0 \tag{7}
\end{equation*}
$$

(b) Solve the following linear system by using operator method

$$
\begin{align*}
& 2 \frac{d x}{d t}+\frac{d y}{d t}+x+5 y=4 t \tag{8}\\
& \frac{d x}{d t}+\frac{d y}{d t}+2 x+2 y=2
\end{align*}
$$

Q6 (a) Define saddle point of a linear system and explain with figure.
(b) Find the characteristic values and characteristic functions of the following Sturm-Liouville problem

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\lambda y=0, y(0)=0, y(L)=0, L>0 \tag{8}
\end{equation*}
$$

Q7 (a) Find the derivative of the function $E(x, y)=x^{2} \tan y$ w.r.t the system

$$
\begin{align*}
& \frac{d x}{d t}=-x+y^{2} \tag{7}\\
& \frac{d y}{d t}=-y+x^{2}
\end{align*}
$$

(b) Determine the type and stability of the critical point $(0,0)$ of the nonlinear autonomous system

$$
\begin{aligned}
\frac{d x}{d t} & =x+x^{2}-3 x y \\
-\frac{d y}{d t} & =-2 x+y+3 y^{2}
\end{aligned}
$$

