January 2023
 M.Sc. Mathematics (Re-Appear) - 1 SEMESTER
 Real Analysis (MATH 17-101)

Time: 3 Hours
Max. Marks:75
Instructions: 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

Q1 (a) State Dirichlet's Test.
(b) State Weierstrass Approximation Theorem.
(c) Define Point wise convergence.
(d) State Darboux's condition of integrability.
(e) Find the radius of convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n!}{n^{\pi}} z^{n} \tag{1.5}
\end{equation*}
$$

(f) Define Power series.
(g) Show that:

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0 \tag{1.5}
\end{equation*}
$$

(h) Differentiate between measurable sets and measurable function.
(i) Define the term Borel Set.
(j) Distinguish between partition and refinement of partition

PART-B

Q2 (a) Prove that, a sequence of functions $\left\{f_{n}\right\}$ defined on [a, b] converges uniformly on [a, b] if and only if for every $\varepsilon>0$ and for all x in [a, b], there exists an integer N such that, $\left|f_{n+p}(x)-f_{n}(\mathrm{x})\right|<\varepsilon$, for every $\mathrm{n} \geq \mathrm{N}$ and $\mathrm{p} \geq 1$.
(b) State and prove Abel's Test.

Q3 (a) Prove that every continuous function is integrable.
(b) Prove that, a bounded function f is integrable on [a, b] if and only if for every $\varepsilon>0$ there exists a partition P of $[\mathrm{a}, \mathrm{b}]$ such that,

$$
\begin{equation*}
U(P, f)-L(P, f)<\varepsilon \tag{6}
\end{equation*}
$$

Q4 (a) If a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $\mathrm{x}=\mathrm{x}_{0}$, then prove that it is absolutely convergent for every $x=x_{1}$, when $\left|x_{1}\right|<\left|x_{0}\right|$.
(b) State and prove Taylor's theorem.

Q5 (a) Let $<f_{n}>$ be a sequence of non-negative measurable functions, then show that,
(b) For any sequence of sets $\left\{E_{n}\right\}_{n}$

$$
\begin{equation*}
m^{*}\left(\int_{n=1}^{\infty} E_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(E_{n}\right) \tag{9}
\end{equation*}
$$

Q6 (a) Prove that the outer measure of an interval is equals to its length.
(b) If f_{1} and f_{2} are two bounded and integrable functions on [a, b], then show that their product f_{1}, f_{2} is also bounded and integrable on $[\mathrm{a}, \mathrm{b}]$.

Q7 (a) Write a short note on " Uniform convergence on an Interval".
(b) If,

$$
f(x, y, z)=\frac{a^{2} x^{2}+b^{2} y^{3}+c^{2} z^{2}}{x^{2} y^{2} z^{2}}
$$

Where $a x^{2}+b y^{2}+c z^{2}=1$ and a, b and c are positive. Then show that, the minimum value of $f(x, y, z)$ is given by:

$$
x^{2}=\frac{u}{2 a(u+a)}, \quad y^{2}=\frac{u}{2 b(u+b)}, \quad z^{2}=\frac{u}{2 c(u+c)}
$$

Where u is the positive root of the equation:

$$
u^{2}-(b c+c a+a b) u-2 a b c=0
$$

