January 2023

B.Sc.Mathematics (Hons.) , B.Sc Mathematics \& Computing 1 SEMESTER

Algebra (BMH-102A)

Time: 3 Hours
Max. Marks:75
Instructions:

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.
4. Any other specific instructions

PART-A

Q1 (a) Find the rank of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ -2 & 4 & -9 \\ 3 & 6 & 4\end{array}\right]$.
(b) Show that every square matrix can be expressed in one and only one way as sum of a symmetric and a skew symmetric matrix.
(c) Prove that the set of vectors $u=(1,3,2), v=(1,-7,-8) ; w=(2,1,-1)$ is linearly dependent.
(d) Show that the diagonal elements of Hermitian matrix are all real.
(e) Express the matrix $\left[\begin{array}{ccc}5-3 i & 2 i & 3+5 i \\ 6 & 7 i & 1-4 i \\ -2+7 i & 4 i & 7\end{array}\right]$ as sum of Hermitian and a skew hermitian matrix.
(f) Find the condition that the roots of the equation $x^{3}-a x^{2}+p=0$ may be A.P.
(g) Use method of synthetic division to express $f(x)=x^{4}+2 x^{3}+6 x^{2}-8 x+4$ as a polynomial in powers of ($\mathrm{x}-3$).
(h) Remove the Fractional coefficients from the equation $x^{4}+\frac{1}{2} x^{3}-\frac{5}{2} x^{2}+\frac{2}{3} x-1=0$
(i) Apply Descarte's rule of siqns to prove that all the roots of the equation

$$
\begin{equation*}
x^{6}-3 x^{2}-x+1=0 \tag{1.5}
\end{equation*}
$$

(j) If A and B are orthogonal Matrices. Prove that $A B$ is also orthogonal.

PART -B

Q2 (a) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) For what values of parameters λ and μ do the system of equations

$$
\begin{align*}
& x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+\lambda z=\mu \tag{7}\\
& \text { Have } \quad \begin{array}{lll}
& \begin{array}{ll}
\text { i) no solution } & \text { ii) unique solution }
\end{array} \quad \text { iii) more than one solution }
\end{array}
\end{align*}
$$

Q3 (a) Verify Cayley Hamilton Theorem for the matrix $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
(b) Find the matrix P which Transforms the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$ to the diagonal form . Hence calculate A^{4}.

Q4 (a) Show that the matrix $\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$ is diagonalizable. Hence find P such that $\mathrm{P}^{-1} \mathrm{AP}$ is Diagonal Matrix.
(b)

Show that 0 is the characterstic root of a matrix if and only if the matrix is singular.

Q5 (a) Find the common roots of the equations $x^{4}+3 x^{3}-5 x^{2}-6 x-8=0$ and

$$
\begin{equation*}
x^{4}+x^{3}-9 x^{2}+10 x-8=0 . \text { Hence solve completely. } \tag{8}
\end{equation*}
$$

(b) Solve the equation $x^{4}-8 x^{3}+23 x^{2}-28 x+12=0$, given that the difference of two of its roots is equal to the difference of other two.

Q6 (a) Solve the equation $x^{4}-9 x^{2}+4 x+12=0$ given that it has multiple root.
(b) Diminish the roots of $2 x^{5}-x .^{3}+10 x-8=0$ by 5

Q7 (a) Solve the equation $x^{3}+x^{2}-16 x+20=0$ by Carden'sMethod.
(b) Apply Descarte's Method to solve the equation $x^{4}-3 x^{2}-42 x-40=0$

