Jan 2023

B.Sc. (H) Physics Semester-IReappear
 Mathematical Physics-I (BPH-101)

Time: 3 Hours
Max. Marks:75
Instructions: 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part $-B$ in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) State Taylor's theorem for series expansion of an analytic function.
(b) Find m so that the vectors $\vec{A}=2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k} ; \vec{B}=\hat{\imath}-m \hat{\jmath}+\hat{k}$ and $\vec{C}=3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ are (1.5) coplanar.
(c) Prove that: $\hat{\imath} \times(\vec{a} \times \hat{\imath})+\hat{\jmath} \times(\vec{a} \times \hat{\jmath})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$
(d) Define Exact differential equation.
(e) Solve: $\left(D^{2}-6 \mathrm{D}+25\right)^{2} y=0$
(f) Find the angle between the surface $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at $(2,-1,2)$
(g) Solve: $\left(D^{2}+4\right) y=\cos 2 x$
(h) Define a Solenoidal and an irrotational vector function?
(i) Explain Linear Independence and Dependence.
(j) Define Dirac-Delta Function and write any of its two properties.

PART - B

Q2 (a) Show that the vector field $\vec{F}=\frac{\vec{r}}{|\vec{r}|^{3}}$ is irrotational as well as solenoidal. Find the scalar potential.
(b) Prove that $\nabla^{2} f(r)=\frac{2}{r} f^{\prime}(r)+f^{\prime \prime}(r)$

Q3 (a) State and verify Green's Theorem in the plane for curve C
$\oint\left\{\left(3 x^{2}-8 y^{2}\right) d x+(4 \mathrm{y}-6 \mathrm{xy}) d y\right\}$
Where C is the boundary of the region defined by $y=\sqrt{x}$, and $y=x^{2}$
(b) Verify Stoke's Theorem for $\vec{F}=(\mathrm{x}+\mathrm{y}) \hat{\imath}+(2 \mathrm{x}-\mathrm{z}) \hat{\jmath}+(\mathrm{y}+\mathrm{z}) \hat{k}$ for the surface of a triangular lamina with vertices $(2,0,0),(0,3,0),(0,0,6)$

Q4 (a) Starting from the principle, derive an expression for divergence of a vector in orthogonal curvilinear coordinates.
(b) Prove that Spherical polar co-ordinate system is orthogonal

Q5 (a) Solve by method of variation of parameters
(b) Solve the differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x \log x \tag{8}
\end{equation*}
$$

Q6 (a) Find the complete solution of the following differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x \tag{8}
\end{equation*}
$$

(b) Solve the following differential equation $(2 \mathrm{x} \log x-\mathrm{xy}) d y+2 \mathrm{y} d x=0$

Q7 (a) Solve the differential equation: $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$
If the directional derivative of $\phi=a x^{2} y+b y^{2} z+c z^{2} x$ at the point $(1,1,1)$ has maximum magnitude 15 in the direction parallel to the line

$$
\begin{equation*}
\frac{(x-1)}{2}=\frac{(y-3)}{-2}=\frac{z}{1} \tag{8}
\end{equation*}
$$

(b) Solve the differential equation: $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$

