Sr. NO. 323105

January 2023

B.Sc. Mathematics(Hons.) - I SEMESTER (Reappear)

Calculus (BMH-101)

Time: 3 Hours

Instructions:

Max. Marks:75

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.

2. Answer any four questions from Part -B in detail.

3. Different sub-parts of a question are to be attempted adjacent to each other.

4. Any other specific instructions

PART -A

Q1	(a)	Evaluate $\int \sinh^5 x \cosh x dx$.	(1.5)
	(b)	Find a,b if $\lim_{x\to 0} \frac{a \sinh x + b \sin x}{x^3} = \frac{5}{3}$.	(1.5)
•	(c)	Find the point of inflexion of the curve $y^2 = (x - 1)^2(x - 2)$.	(1.5)
	(d)	Using reduction formula , evaluate $\int \cos^6 x dx$.	(1.5)
	<u>(</u> e)	Sketch the graph of hyperbola $y^2 - x^2 = 1$, showing the vertices ,foci and asymptotes.	(1.5)
	(f)	State theorem of reflection property of Parabolas.	(1.5)
	(g)	Find the maxima or minima of the curve $f(x) = 3x^5 - 5x^3 + 2$.	(1.5)
	(h)	If $\overrightarrow{f(t)} = t\hat{\imath} + (t^2 - 2t)\hat{\jmath} + (3t^2 + 3t^3)\hat{k}$, find $\int_0^1 \overrightarrow{f(t)} dt$.	(1.5)
	(i)	Write the formula of radius of curvature for Cartesian curves.	(1.5)
	(j)	Find the nth derivative of $log(ax + x^2)$.	(1.5)

PART -B

- Q2 (a) If $y = (sin^{-1}x)^2$, show that $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} n^2y_n = 0$. Hence, find (8) $(y_n)_0$.
 - (b) Find all the asymptotes of the following curve $(x y)^2(x + 2y 1) = 3x + y 7$ (7)

Q3	(a)	Deduce reduction formula for $\int \sin^m x \cos^n x dx$ and hence evaluate $\int \sin^4 x \cos^2 x dx$.	(8)
	(b)	The loop of the curve $2ay^2 = x(x - a)^2$ revolves about x-axis. Find the volume of the solid so generated.	(7)
Q4	(a)	Describe the graph of the equation $x^2 - y^2 - 4x + 8y - 21 = 0$.	(8)
	(b)	Identify and sketch the curve xy=1	(7)
Q5	(a)	Prove that radius of curvature at any point of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ is three times the length of the perpendicular from the origin to the tangent at that point	(8)
	(b)	Sketch the curve $x = 2 \operatorname{cost}$, $y = 5 \sin t$, $(0 \le t \le 2\pi)$.	(7)
Q6	(a)	State and Prove Leibnitz Theorem.	(8)
	(b)	Sketch the graph of $\frac{x^2 - x - 2}{x - 3}$	(7)
Q7	(a)	Find the inflection points for the function $f(x) = 3x^5 - 5x^3 + 2$	(8)

(b) Find the length of the arc of the parabola $y^2 = 4ax$ from the vertex to an extremity of (7) the latus rectum