(b) Evaluate $\iint_{s} (2xy\hat{i} + yz^{2}\hat{j} + xz\hat{k}) \cdot ds$ over the surface

of the region bounded by x = 0, y = 0, y = 3, z = 0 and x + 2z = 6. (5)

- (a) Prove that the spherical polar co-ordinate system is orthogonal. Hence, express Laplacian operator ∇² in spherical polar co-ordinate system, (10)
 - (b) Express $z\hat{i} 2x\hat{j} + y\hat{k}$ in cylindrical co-ordinate system. (5)

Roll No.

Total Pages: 4

321101

January 2023

B.Sc. - 1st SEMESTER Mathematical Physics-I (BPH-101A)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) Expand the function $f(x) = \frac{1}{x}$ about a = 1 using Taylor series. (1.5)
 - (b) Solve a differential equation $x^2dy + y(x + y)dx = 0.$ (1.5)
 - (c) Prove that the solutions $y_1 = e^{-x} \cos x$ and $y_2 = e^{-x} \sin x$ of a differential equation are linearly independent.

(1.5)

(d) Show that $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0.$ (1.5)

(e) Find a unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3). (1.5)

321101/80/111/396

- 4

(f) Prove that
$$\vec{\nabla} \cdot (\vec{F} \times \vec{G}) = \vec{G} \cdot (\vec{\nabla} \times \vec{F}) - \vec{F} \cdot (\vec{\nabla} \times \vec{G}).$$

(1.5)

(g) Show that area of a plane region can be expressed as

$$A = \frac{1}{2} \int_{C} (xdy - ydx), \text{ using Green's Theorem.} \quad (1.5)$$

- (h) Find the work done when a force $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$ moves a particle from origin to (1, 1) along a parabola $y^2 = x$. (1.5)
- (i) What is Dirac-delta function? Evaluate.

$$\int_{-\infty}^{\infty} \sin 2t \,\delta\left(t - \frac{\pi}{4}\right) dt. \tag{1.5}$$

(j) Express arc length in cylindrical co-ordinate system coaxial with z-axis. (1.5)

PART-B

2. Solve the following differential equations :

(a)
$$[1 + \log(xy)]dx + \left[1 + \frac{x}{y}\right]dy = 0.$$
 (4)

(b)
$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6y = e^x \cosh 2x.$$
 (5)

(c)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$
 using method of variation of parameters. (6)

321101/80/111/396

- 3. Solve the following differential equations :
 - (a) $y(x^2y + e^x)dx e^xdy = 0.$ (4)

(b)
$$\frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 2y = \sinh x + \sin \left(\left(\sqrt{2} \right) x \right).$$
 (5)

- (c) $\frac{d^2y}{dx^2} 2\frac{dy}{dx} = e^x \sin x$ using method of variation of parameters. (6)
- (a) Prove that $\vec{p} \times \left[\left(\vec{a} \times \vec{q} \right) \times \left(\vec{b} \times \vec{r} \right) \right] + \vec{q} \times \left[\left(\vec{a} \times \vec{r} \right) \times \left(\vec{b} \times \vec{p} \right) \right]$ $+ \vec{r} \times \left[\left(\vec{a} \times \vec{p} \right) \times \left(\vec{b} \times \vec{q} \right) \right] = 0.$ (5)
- (b) Show that the vector field $\vec{F} = \frac{\vec{r}}{r^3}$ is solenoidal as well as irrotational. Find the scalar potential such that $\vec{F} = \vec{\nabla} \emptyset$. (10)
- 5. (a) Find the constants 'm' and 'n' such that the surface $mx^2 2nyz (m + 4)x$ will be orthogonal to the surface $4x^2y + z^3 = 4$ at the point (1, -1, 2). (5)
 - (b) State and prove Gauss's Divergence Theorem. (10)
- 6. (a) Verify Stoke's Theorem for

4.

 $\vec{F} = (x^2 + y - 4)\hat{i} + 3xy\hat{j} + (2xz + z^2)\hat{k}$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above the xv-plane. (10)

321101/80/111/396 3 [P.T.O.