(b) Evaluate $\iint_{S}\left(2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}\right) \cdot \overrightarrow{d s}$ over the surface of the region bounded by $x=0, y=0, y=3, z=0$ and $x+2 z=6$.
7. (a) Prove that the spherical polar co-ordinate system is orthogonal. Hence, express Laplacian operator ∇^{2} in spherical polar co-ordinate system,
(b) Express $z \hat{i}-2 x \hat{j}+y \hat{k}$ in cylindrical co-ordinate system.

Total Pages: 4
321101

January 2023

B.Sc. - 1st SEMESTER

Mathematical Physics-I (BPH-101A)

Time : 3 Hours]
[Max. Marks
75
Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Expand the function $f(x)=\frac{1}{x}$ about $a=1$ using Taylor series.
(b) Solve a differential equation $x^{2} d y+y(x+y) d x=0$.
(c) Prove that the solutions $y_{1}=e^{-x} \cos x$ and $y_{2}=e^{-x} \sin x$ of a differential equation are linearly independent.
(1.5)
(d) Show that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$.
(e) Find a unit normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$.
321101/80/111/396
(f) Prove that $\vec{\nabla} \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot(\vec{\nabla} \times \vec{F})-\vec{F} \cdot(\vec{\nabla} \times \vec{G})$.
(g) Show that area of a plane region can be expressed as $A=\frac{1}{2} \int_{C}(x d y-y d x)$, using Green's Theorem.
(h) Find the work done when a force $\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{i}-$ $(2 x y+y) \hat{j}$ moves a particle from origin to $(1,1)$ along a parabola $y^{2}=x$.
(i) What is Dirac-delta function? Evaluate.

$$
\begin{equation*}
\int_{-\infty}^{\infty} \sin 2 t \delta\left(t-\frac{\pi}{4}\right) d t \tag{1.5}
\end{equation*}
$$

(j) Express arc length in cylindrical co-ordinate system coaxial with z -axis.

PART-B

2. Solve the following differential equations :
(a) $[1+\log (x y)] d x+\left[1+\frac{x}{y}\right] d y=0$.
(b) $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=e^{x} \cosh 2 x$.
(c) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}$ using method of variation of parameters.
3. Solve the following differential equations :
(a) $y\left(x^{2} y+e^{x}\right) d x-e^{x} d y=0$.
(b) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=\sinh x+\sin ((\sqrt{2}) x)$.
(c) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}=e^{x} \sin x$ using method of variation of parameters.
4. (a) Prove that

$$
\begin{align*}
\vec{p} \times[(\vec{a} \times \vec{q}) \times(\vec{b} \times \vec{r})] & +\vec{q} \times[(\vec{a} \times \vec{r}) \times(\vec{b} \times \vec{p})] \\
& +\vec{r} \times[(\vec{a} \times \vec{p}) \times(\vec{b} \times \vec{q})]=0 \tag{5}
\end{align*}
$$

(b) Show that the vector field $\vec{F}=\frac{\vec{r}}{r^{3}}$ is solenoidal as well as irrotational. Find the scalar potential such that $\vec{F}=\vec{\nabla} \varnothing$.
5. (a) Find the constants ' m ' and ' n ' such that the surface $m x^{2}-2 n y z-(m+4) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.
(b) State and prove Gauss's Divergence Theorem.
6. (a) Verify Stoke's Theorem for

$$
\vec{F}=\left(x^{2}+y-4\right) \hat{i}+3 x y \hat{j}+\left(2 x z+z^{2}\right) \hat{k}
$$

over the surface of hemisphere $x^{2}+y^{2}+z^{2}=16$ above the $x v$-plane.

321101/80/111/396
3
[P.T.O.

