(b) Define difference of sets and complement of a set. If A
6. (a) Explain sum, difference, product and quotient of two functions.
(b) If $\cos x \cdot \operatorname{cosec} x=-1$ and x lies in the fourth quadrant, find $\cos x$ and $\sin x$.
7. (a) If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, then find the value of x.
(b) Prove that
$2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$.

January, 2023

B.Sc. (Chemistry) 1st Semester

BASIC ALGEBRA (OMTH-102)
Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Find a matrix X such that $A+2 B+X=0$, where

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-1 & 2 \\
3 & 4
\end{array}\right]
$$

(b) If $A=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]$, then find $\left(2 A^{\prime}+B\right)$, where A^{\prime} is transpose of matrix A.
(c) If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, check whether $|2 \mathrm{~A}|=4|\mathrm{~A}|$.
(d) Solve for $x:\left[\begin{array}{ccc}x & 2 & -1 \\ 2 & 5 & x \\ -1 & 2 & x\end{array}\right]=0$.
(e) Define Null matrix and Identity matrix.
(f) What do you mean by equal sets and equivalent sets ?
(g) Define cartesian product of sets.
(h) Define Domain and Range of a function.
(i) Find principal value of inverse trigonometric function $\sin ^{-1}\left(\frac{1}{2}\right)$.
(j) If $\sin \theta=-\frac{1}{\sqrt{2}}$ and $\tan \theta=1$; find the quadrant in which θ lies.
$(10 \times 1.5=15)$

PART-B

2. (a) If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$, find $A^{3}-23 A-40 I$, where I is unit matrix.
(b) If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, check whether $A B$ is equal to BA or not?
3. (a) Find the inverse of $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ by using elementary row operations.
(b) Find all the co-factors of $\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 0 & -1\end{array}\right|$.
4. (a) Find the inverse of the matrix $A=\left|\begin{array}{lll}1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0\end{array}\right|$.
(b) Solve the following system of equations :

$$
\begin{equation*}
2 x+8 y+5 z=5 ; x+y+z=-2 ; x+2 y-z=2 \tag{8+7}
\end{equation*}
$$

5. (a) If $A=\{1,2,3\}, B=\{2,3,4\}, C=\{1,3,4\}$ and $D=\{2,4,5\}$, then verify that

$$
(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{D})=(\mathrm{A} \cap \mathrm{C}) \times(\mathrm{B} \cap \mathrm{D}) .
$$

