August/September 2022
 B.Tech.- II SEMESTER
 Mathematics-II (Civil: Differential Equations) BSC-106B

Max. Marks:75

Time: 3 Hours

1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

Q1 (a) Form the differential equation by eliminating the arbitrary constants from the (1.5) following : $y=c_{1} e^{x}+c_{2} \cos x$.
(b) Write a necessary and sufficient condition that the differential equation (1.5) $M d x+N d y=0$ to be exact.
(c) Find general solution of $y=(x-a) p-p^{2}$.
(d) Identify the nature of singular points of the differential equation

$$
y^{\prime \prime}+x^{2} y^{\prime}+\left(1-x^{2}\right) y=0 .
$$

(e) Find the expressions for $J_{0}(x)$ and $J_{1}(x)$.
(f) Write the Rodrigue's formula for the Legendre's polynomial.
(g) Find the order and degree of the following partial differential equation:

$$
\begin{equation*}
\left(\frac{\partial z}{\partial x}\right)^{3}+\frac{\partial^{2} z}{\partial y^{2}}=\cos (x+y) \tag{1.5}
\end{equation*}
$$

(h) Find Particular integral of the differential equation $\left(D^{2}+D^{\prime}+4\right) z=e^{4 x-y}$.
(i) Solve the differential equation $\left(D^{2}-D D^{\prime}-2 D\right) z=0$.
(j) Write two-dimensional Heat equation.

PART-B

Q2 (a) Solve $x^{2} p^{2}-2 x y p+2 y^{2}-x^{2}=0$.
(b) Find the general solution of $x^{2}(y-p x)=y p^{2}$.

Q3 (a) Show that the equation $(2 x-y) d y+(2 y+x) d x=0$ can be made exact by the (7) integrating factor $\frac{1}{x^{2}+y^{2}}$ and hence, solve the equation.
(b) Solve $2 y \cos y^{2} \frac{d y}{d x}-\frac{2}{x+1} \sin y^{2}=(x+1)^{3}$.

Q4 Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x^{2} \log x$, by the method of variation of parameters.
Q5 (a)
Show that $J_{\frac{5}{2}}(x)=\sqrt{\frac{2 x}{\pi}}\left[\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin x-\frac{3}{x^{2}} \cos x\right]$.
(b) Express $x^{3}+2 x^{2}-x-3$ in terms of Legendre polynomiáls.

Q6 (a) Solve $\left(D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) y=\sin (x+2 y)$.
(b) Find a partial differential equation of all spheres of given radius.

Q7 By using method of separation of variables, find the solution of the wave (15) equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$ such that $u=B_{0} \cos b t$, (where B_{0} is constant), when $x=a$ and $u=0$, when $x=0$.

