August/September 2022 B.Tech.- II SEMESTER

Mathematics-II (Civil: Differential Equations) BSC-106B

Max. Marks:75

(1.5)

- Time: 3 Hours Instructions:
- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART -A

- Q1 (a) Form the differential equation by eliminating the arbitrary constants from the (1.5) following: $y = c_1 e^x + c_2 \cos x$.
 - (b) Write a necessary and sufficient condition that the differential equation (1.5) Mdx + Ndy = 0 to be exact.
 - (c) Find general solution of $y = (x-a)p p^2$. (1.5)
 - (d) Identify the nature of singular points of the differential equation (1.5) $y'' + x^2y' + (1-x^2)y = 0.$
 - (e) Find the expressions for $J_0(x)$ and $J_1(x)$. (1.5)
 - (f) Write the Rodrigue's formula for the Legendre's polynomial. (1.5)
 - (g) Find the order and degree of the following partial differential equation: (1.5)

$$\left(\frac{\partial z}{\partial x}\right)^3 \div \frac{\partial^2 z}{\partial y^2} = \cos(x+y).$$

പ	Find Particular integral of the differential equation $(D^2 + D' + 4)z = e^{4x-y}$.	(1.5)
(II)	Fillu Faiticular mog-	(15)
(i)	Solve the differential equation $(D^2 - DD^2 - 2D)z = 0$.	(1.5)

(j) Write two-dimensional Heat equation.

PART -B

Q2	(a) (b)	Solve $x^2p^2 - 2xyp + 2y^2 - x^2 = 0$. Find the general solution of $x^2(y - px) = yp^2$.	(8) (7)
03	(a)	Show that the equation $(2x - y)dy + (2y + x)dx = 0$ can be made exact by the	(7)
·		integrating factor $\frac{1}{x^2 + y^2}$ and hence, solve the equation.	(8)
	(h)	$2 dy = 2 \sin y^2 - (x+1)^3$	(U)

(b) Solve $2y \cos y^2 \frac{dy}{dx} - \frac{2}{x+1} \sin y^2 = (x+1)^3$.

Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 \log x$, by the method of variation of parameters. (15)

Q4

Q5 (a) Show that
$$J_{\frac{5}{2}}(x) = \sqrt{\frac{2x}{\pi}} \left[\left(\frac{3}{x^3} - \frac{1}{x} \right) \sin x - \frac{3}{x^2} \cos x \right].$$
 (8)

(b) Express
$$x^3 + 2x^2 - x - 3$$
 in terms of Legendre polynomiáls. (7)

Q6 (a) Solve
$$(D^3 - 7DD^{'2} - 6D^{'3})y = \sin(x + 2y)$$
. (10)
(b) Find a partial differential equation of all spheres of given radius. (5)

Q7 By using method of separation of variables, find the solution of the wave (15) equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ such that $u = B_0 \cos bt$, (where B_0 is constant), when x = a and u = 0, when x = 0.