Total Pages : 3	002403	122 Lester	ntroduction s	(E-204)	[Max. Marks : 75		e questions (1.5 marks		Part-B in detail. 1 are to be attempted			(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	17 [P.T.O.
' Roll No.		August/September 2(B.Tech. (Civil) IV Sem	Basics of Fluid Mechanics / I to Fluid Mechanic	(PCC-CE-204R / PCC-C	Time : 3 Hours]	Instructions :	1. It is compulsory to answer all the	each) of Part-A in short.	2. Answer any four questions from 3. Different sub-parts of a question	adjacent to each other.	PART-A	1. (a) Real fluid.	(b) Kinematic Viscosity.	c) Turbulent flow.	(d) Meta centre of body.	(e) Compressibility.	(f) Surface tension.	(g) One Poise.	002403/160/111/355
	ſ											•							
		ж. 1																	

			 _	•		
	(ł)	1-D, 2-D and 3-Dimensional Flow. (1.5)	S.	(a) Discuss the term Cavitation and los	ses due to	
	(j)	Mach Number. (1.5)		cavitation.	(5)	
	0	Centre of buoyancy. (1.5)		(b) How will you determine the metacentric	height of a	
				floating body experimentally? Explain with	neat sketch.	
		PART-B			(10)	
5	(a)	What do you understand by Capillary Fall and				
	ł	Capillary Rise. Derive the expression for them. (10)	9	(a) Explain Euler's equation of motion. W	hat are the	
	(q)	What do you understand by Single Column Manometer ? Explain with the help of neat sketch.		kinetic energy correction factor and	momentum (10)	
		(5)				
				(b) Discuss and explain the Buckingham's l	ie Theorem	
Э	(a)	Find the surface tension in a soap bubble of 30 mm		in detail.	(2)	
		diameter when the inside pressure is 1.962 N/nf above	F	Evalain the difference in following types of	. mo	
		atmosphere. (5)		Explain ure uniterence in romowing types or	· wor	
	(q)	The velocity component for a two dimensional		(i) Steady and unsteady flow.		
		incompressible flow are given by $u = 3x - 2y$ and		(ii) Uniform and non-uniform flow.		
		v = -3y - 2x. Show that the velocity potential exists.		(iii) Rotational and irrotational flow.		
		Determine the velocity potential function and stream		(iv) Compressible and incompressible flow.	(15)	
		function. (10)	•			
4	A	simple U-Tube manometer containing mercury is				
	CO	nnected to pipe in which a fluid of sp.gr. 0.8 and having				
	IS.	open to atmosphere. Find the vacuum pressure in pipe.				
	If	the difference of mercury level in the two limbs is 40 cm d the height of fluid in the left from the centre of nine				
	IS.	15 cm below. (15)				
000	403/	160/111/355 2	200	03/160/111/355 3		

I.