Roll No.

Total Pages : 3

002404

August/September 2022 B.Tech. (Civil) IV SEMESTER BASICS OF SOLID MECHANICS (PCC-CE-205R)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. Use of Scientific calculator is permitted.

PART-A

- 1. (a) Define principal stresses and principal strains. (1.5)
 - (b) What is Mohr's Circle? Elaborate. (1.5)

Define Poisson's ratio. (1.5)

- (d) Define section modulus. (1.5)
- (e) What is hoop stress? Elaborate. (1.5)
- (f) Define Hooke's Law. (1.5)
- (g) Define moment of Inertia. (1.5)
- (h) Define Torsion. (1.5)

002404/170/111/271

(c)

196 [P.T.O.

Derive the expression from Mohr's Circle for normal and tangential stress when a body is subjected to two mutually perpendicular tensile stresses of unequal intensities. Draw suitable diagrams	Diam summary magnetic.	 (a) Derive the expression of section modulus for a rectangle of width-b and depth-d. Draw suitable diagram. (5) (b) What is theory of simple bending. Discuss the different assumptions of theory of simple bending. (10) 	 (a) A steel plate of width 120 mm and of thickness 20 mm is bent into a circular arc of radius 10 m. Determine the maximum stress induced and the bending moment which will produce the maximum stress. Take E - 2 × 10⁵ N/mm². (10) 	 (b) A cylinder of internal diameter 2.5 m and thickness 5 cm contains a gas. If the tensile stress in the material is not to exceed 80 N/mm², determine the internal pressure of the gas. 	A cantilever of length 2.0 m carries a uniformly distributed load of 1 kN/m run over a length of 1.5 m from the free end. Draw the shear force and bending moment diagram for the cantilever. (15)
, . 4		ن، ف	`		
 (i) What is modulus of rigidity? (1.5) (j) Define bulk modulus. (1.5) 	PART-B	 (a) A steel rod of 3 cm diameter is enclosed centrally in a hollow copper tube of external diameter 5 cm and internal diameter 4 cm. The composite bar is then subjected to an axial pull of 45000 N. If the length of each bar is equal to 15 cm, determine : (i) stresses in the rod and tube. 	 (ii) load carried by each bar. (b) A rectangular bar of cross-sectional area 10000 mm² is subjected to an axial load of 20 kN. Determine the normal and shear stresses on a section which is inclined at an angle of 300 with normal cross-section 	 of the bar. (5) (a) Find the Young's modulus of a brass rod of diameter 25 mm and of length 250 mm which is subjected to a tensile load of 50 kN when the extension of the rod 	 is equal to 0.3 mm. (b) A wooden beam 100 mm wide and 150 mm deep is simply supported over a span of 4 metres. If shear force at a section of the beam is 4500 N, find the shear stress at a distance of 25 mm above the Neutral axis.

 $\overline{}$

Э.

તં

002404/170/111/271

2

002404/170/111/271

e