design conditions stipulate that the low emissivity side should face the hotter place. How would the shield temperature be affected if during installation, a mistake occurs and the higher emissivity side is placed facing the hot place? (15)

7. Write short notes on :

(a) Modes of mass transfer.

(b) Fick's law.

(7)

(8)

Roll No.

Total Pages: 4

013614

August/September 2022 B.Tech. (ME) Re-Appear VI SEMESTER Heat and Mass Transfer (ME-302C)

Time : 3 Hours]

[Max. Marks: 75

Instructions :

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

- 1. (a) State Fourier's Law of heat conduction. (1.5)
 - (b) An oil cooler in a high performance engine has an outside surface area 0.12 m² and a surface temperature of 70°C. The air rushes flows over the cooler surface at a temperature of 35°C and gives rise to a surface coefficient of heat transfer equal to 45.4 W/m²K. Calculate heat transfer rate from the cooler. (1.5)
 - (c) What is meant by critical thickness of insulation?

(1.5)

[P.T.O.	e	3614(20/111/476	0		CN	14/20/111/476
and 0.6 on the other side. The	on one side	value of 0.05		D		determine :
diation shield with emissivity	iterpose a ra	proposed to in		ank is 80 W/m ² -deg	inner surface of the t	coefficient at the
e has a temperature of 1000 K 400 K temperature It is then	on. One plar r nlane is at	while the othe		ion with a combined	convection and radiat	25°C by natural c heat transfer coeff
th emissivity 0.8 are exchanging	lel planes wi	Two large paral	9	at to surrounding at	. The tank loses hea	ice water at 0°C
				-deg) is used to stor	ss steel (k = 15 W/m	A spnencal tank 2 cm thick stainle
: = 0.703. (10)	W/m-deg; P	= 0.0259		meter and made of	of 3 m internal dia	A spherical tank
) ⁻⁶ m ² /s; thermal conductivity	= 15.06 × 1	viscosity =				significance.
operties of air are: kinematic	o-physical p	the thermo		explain its physical	nal diffusivity and	(b) Define therm
ean film temperature 20°C,	(At the m	the plate.				boury.
transfer from both sides of	ctive heat	the conve		ature of a radiating	adiation and temper	to thermal r
. If the air is at 10°C, calculate	ce at 9 km/hr	to 1 m edg		zman law relating	xplain Stefan Bolt	(a) State and e
cooled by blowing air parallel	30°C. It is	initially at			PART-B	
$measures 3 m \times 1 m and is$	at steel plate	(b) A heat-tre				
ype has a inglict heat transici 1y? (5)	cient and w	film coeffi		(1.5)		diffusion.
Idensation differ from dropwise	filmwise con	(a) How does	ů.	رتند) diffusion and eddy	y or rautain circigy. between molecular	(j) Distinguish l
		0		/, reflectivity and	terms absorptivity	(i) Explain the
ow and a (ii) counter flow heat	i) parallel fl	(LMTD) for a ((1.5)	off's law.	(h) State Kirchho
og-mean temperature difference	pression for]	Establish the ex	4.	a heat exchanger. (1.5)	iveness and NTU of	g) Define effect
f ice = 334 kJ/kg). (15)	latent heat c	24 hours ((1.5)		boiling?
at melts during a period of	nt of ice th	(ii) the amoun		leation in nucleate	understand by nuc	f) What do vou
		and		er. (1.5)	lt and Grashof numb	e) Define Nusse
r to the iced water in the tank,	heat transfe	(i) the rate of		in. (1.5)	rm effectiveness of f	d) Define the ter

i

013614/20/111/476

e.