		Sr. No 015201
	August/	September-2022
1	B.Tech.(ECE/EN	C/EEIOT)- II SEMESTER
(Calcu	llus, Ordinary Differential E	quation and Complex Variable)(BSC-106D)
Time: 3 Hours		Max. Marks:75
Instructions:	 It is compulsory to answer all t Answer any four questions from Different sub-parts of a question 	the questions (1.5 marks each) of Part -A in short. m Part -B in detail. on are to be attempted adjacent to each other.

PART-A

Que.1(a)Evaluate $\int_{0}^{1} \int_{0}^{y^{2}+1} x^{2}y dx dy$

(b) Find the area lying between the parabola $y = 4x - x^2$ and the line y = x. (1.5)

(c) Solve $(xy^3+y)dx+(2x^2y^2+x+y^4)dy = 0$.	(15)
(d) Solve the differential equation:	(1.5)
$y = 2px+p^4x^2$ (solvable for y).	(1.5)
(e) Solve $(D^4+6D^2+9) y = 0$, where $D = d/dx$.	(1.5)
(f)Write the Bessel's differential equation of order n.	(1.5)
(g) State C-R Equations.	(1.5)
(h) Define conformal mapping.	(1.5)
(i) State Cauchy's integral theorem and Cauchy's integral formula.	(1.5)
(j) State Cauchy's Residue Theorem.	(1.5)

PART-B

Que.2 (a)Change the order of integration in the given integral and then evaluate dydx (7)(b) Verify the Green's theorem in the plane for $\oint (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the boundary of the region defined by x = 0, y = 0, x + y = 1. (8) Que.3 (a)Solve the differential equation $(2y\sin x+3y^4\sin x\cos x)dx - (4y^3\cos^2x+\cos x)dy = 0$. (7) (b)Solve the differential equation: $y = 2px+y^2p^3$ (Solvable for x). (8) Que.4 (a)Using variation of parameter ,solve $(D^2 - 6D + 9)y = \frac{e^{3x}}{x^2}$, where D = d/dx. (7) $4x^3 - 2x^2 - 3x + 8$ in terms of Legendre's polynomial. (b)Express (8) Que.5 (a)Show that the function $u = e^{-2xy} \sin(x^2 - y^2)$ is harmonic. Find the conjugate function 'v' and express u+iv as an analytic function of z. (7)(b)Under the transformation w = 1/z, find the image of the given curve: |z - 2i| = 2. (8)

Que.6 (a)Expand $\frac{e^{2z}}{(z-1)^3}$ about the singularity z = 1 in Laurent's series. (7) (b)Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}$ using Residue theorem. (8) Que.7 (a) Find the volume bounded by the cylinder $x^2+y^2 = 4$ and the planes y + z = 4 and z = 0. (7) (b)Find the sum of the residues of the function $f(z) = \frac{sinz}{zcasz}$ at its poles inside the circle |z| = 2. (8)