Duplicate

Sr. No

May 2019
 B.Tech ECE-1V SEMESTER
 Communication System (EC-210C)

Max. Marks:75
Time: 3 Hours
Instructions: 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
2. Answer any four questions from Part -B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

Part - A		
(a) State \& prove superposition theorem for fourier transform.		
(b) What is the need of modulation in communication system.	(1.5)	CO
(c) Ca.culate power content of carrier \& each of side band of AM signal	(1.5)	$\mathrm{CO1}$

(c) Ca.culate power content of carrier \& each of side band of AM signal

(1.5)	$\mathrm{CO2}$
(1.5)	$\mathrm{CO2}$

(e) What is nonlinear modulation.
(1.5) CO 3
(f) What is aliasing \& how it can reduced.
(1.5) CO 3
(g) What is necessity ${ }^{+}$of non-uniform quantization

(1.5)	$\mathrm{CO5}$
(1.5)	$\mathrm{CO4}$

(i) Differentiate between coherent \& non coherent detection.
(1.5) CO2
(j) An angle modulated signal is given below. Identify whether it is FM or PM
sirnal $x_{c}(t)=5 \operatorname{Cos}\left[2 \pi\left(10^{6}\right) t+0.2 \pi t\right]$

Q2 (a) Find the exponential fourier series for following impulse train. Also find

(b) Find the fourier transform of a periodic train of triangular pulse with
(8) C01 period T \& base width of 2ζ \& amplitude A.

Q3 (a) Explain collector modulation method for AM generation with (b) A received single tone sinusoidally modulated SSB-SC signal $\operatorname{Cos}\left(\omega_{c}+\omega_{m}\right) t$
las a normalized power of 0.5 volt 2. The signal is to be detected by carrier reinsertion technique. Find the amplitude of carrier to be reinserted so that the power in the recovered signal at the demodulator output is 90% of the normalized power. The dc component can be neglected

