MAY, 2019
B.TECH. (EL)-VI SMESTER DIGITAL SIGNAL PROCESSING (EC-335-C)

Time : Three Hours]
[Max Marks : 75

Note :

1. Part-A is compulsory and attempt 4 Questions from Part-B.
2. Assume relevant data/figure if found missing.

PART-A

1. (a) Differentiate between Energy and Power Signal.
(1.5) CO 1
(b) Determine the step response for the LTI System represented by the following impulse response $h(n)=\delta(n)-\delta(n-2)$.
(1.5) CO 1
(c) What is the property of recursive and non-recursive systems?
(1.5) CO 1
(d) Differentiate between down sampling and up sampling. (1.5) CO 2
(e) State Nyquist Theorem. 1.5 CO2
(f) Give the relationship between z-transform and DTFT. (1.5) CO 3
(g) What is meant by radix-2 FFT.
(1.5) CO 3
(h) Explain the importance of linear phase in filter design.
(i) How many additions, multiplications and memory locations are required to realize a system $\mathrm{H}(\mathrm{z})$ having M zeros and N poles in direct form realizations.
(1.5) CO 4
(j) State the advantage of cascade realization.
(1.5) CO 4

PART-B

2. (a) Determine the solution of the difference equation

$$
y(n)=\frac{5}{6} y(n-1)-\frac{1}{6} y(n-2)+x(n)=2^{n} u(n)
$$

(10) CO 1
(b) For the given system, determine whether it is memoryless, stable, causal, linear and time invariant. $y(n)=|x(n)|$
3. (a) State and prove sampling theorem.
(8) CO 2
(b) Find the Nyquist rate for the signal $x(t)=3 \cos (2000 \pi t)+5 \sin (6000 \pi t)+10 \cos (12000 \pi t)$. Find the discrete time signal obtained after sampling of the signal if sampled at rate fs $=5000$ samples $/ \mathrm{sec}$.
4. Find the inverse z transform

$$
\begin{equation*}
X(z)=\frac{z^{3}-10 z^{2}-4 z+4}{2 z^{2}-2 z-4} \text { with ROC }|z|<1 \tag{15}
\end{equation*}
$$

5. (a) State and prove convolution property of DTFT.
(8) CO 3
(b) Determine the DTFT of the sequence

$$
\begin{equation*}
y(n)=n a^{n} u(n)|a|<1 \tag{7}
\end{equation*}
$$

6. (a) Give the similarities and differences between the Decimation in Time and Decimation in Frequency Algorithms.
(8) CO 3
(b) Find the DFT of the sequence $x(n)=\{1,1,0,0\}$ and find the IDFT of $Y(k)=\{1.01,0\}$
(7) CO 3
7. Obtain the direct-Form-I and Direct Form-II and cascade form realization structures for the given system.

$$
\begin{aligned}
& y(n)=-0.1 y(n-1)+0.72 y(n-2) \\
&+0.7 x(n-0.25 x(n-2)) \\
&(15) C O 4
\end{aligned}
$$

