YMCA UNIVERSITY OF SCIENCE AND TECHNOLOGY B.TECH EXAMINATION (UNDER CBS), MAY 2018 ANALOG INTIGRATED CIRCUITS (E305)

M.Marks:60

NOTE: Attempt all the questions in part 1 with brief answers (word limit 20-40). Attempt any four Question from part 2. The marks are indicated in front of each question

PART-1(EACH QUESTIOM CARRY 2 MARKS)

Q.No.1.Answer the following:
I. State the merits of negative feedback in amplifier ?
II. What do you mean distortion in amplifiers?
III. Draw only circuit diagram of crystal- oscillator.
IV. Why a power amplifier is always preceded by a voltage amplifier?
V. Indicate an OP-AMP connected as (a) a scale changer (b) a phase shifter.
VI. The output voltage of a certain OP-AMP circuit change by 25 V is $5 \mu \mathrm{~s}$. What is slew rate?
VII. What is an oscillator? Give Barkhausen criteria.
VIII. Draw only circuit diagram of sample and hold circuit.
IX. Give any four applications of logarithmic amplifier.
X. Give definition of A and C power amplifier.

PART-2

Q.No. 2(a) If n amplifier are connected in cascade, each having higher cut-off frequency f_{H}. The overall cut-off frequency of cascaded circuit is $f_{H}{ }^{\circ}$. Determine the relation between f_{H} and f_{H}.
(b) Explain R-C coupled amplifier. Discuss the frequency response curve and phase-shift curve . (5)
Q.No.3(a) Discuss effect of negative feedback on input impedence and output impedence for voltage-series feedback, Derive it.
(b) A class-A power amplifier uses a transformer as a coupling device. The transformer has a turn ratio of 10 and the secondary load is 10Ω. If the zero signal collector current is 100 mA , find the maximum power output.
Q.No.4(a) Draw the circuit of Wein-bridge oscillator and Explain its operation and determine the frequency of oscillation.
(b) Drive expression for overall efficiency of class B Puss-pull power amplifier \& draw its dig.
Q.No.5(a) A crystal-oscillator has following parameters, $L=0.33$ henry, $C=0.065 \mathrm{Pf}, C_{m}=1.0 \mathrm{pF}$ and $\mathrm{R}=5.5 \mathrm{k}-\Omega$, find series and parallel resonant frequency and find Q -factor of the crystal.
(b)A $5 \mathrm{mV}, 1 \mathrm{Khz}$ sinusoidal signal is applied to the input of an OP-AMP integrator for which $R_{1}=100 \mathrm{~K} \Omega$ and $C=1 \mu F$ find the output voltage.
Q.No.6(a)Draw the circuit for antilog amplifier using op-amp and derive the expression for output voltage
(b) What is the maximum closed-loop voltage gain that can be used when the input signal varied by 0.5 V in $10 \mu \mathrm{~s}$, for an OP-AMP having slew rate $\mathrm{SR}=4 \mathrm{~V} / \mu \mathrm{S}$?
Q.No.7(a). Give characteristics of ideal OP- AMP.
(b) Wirite short note on any two.
(1) AC coupled amplifier.
(2) IC-555 timer as astable multivibrator.
(3) Voltage to current convertor

