Examination Roll No.....

YMCA UNIVERSITY OF SCIENCE& TECHNOLOGY, FARIDABAD

B. TECH. 8th SEMESTER (UNDER CBS)

CAPS(EL-410)

Time: 3 Hours Max. Marks:60

Note: 1. It is compulsory to answer the questions of Part -1. Limit your answers within 20-40 word in this part.

- 2. Answer any four questions from Part -2 in detail.
- 3. Different parts of the same question are to be attempted adjacent to each other.
- 4. Use of unmarked Steam tables, Mollier charts etc. is allowed.
- 5. Assume suitable standard data wherever required, if not given.

	-	PART-1	(Chenyanikina)
Q1	(a)	What are various types of buses in load flow studies?	(2)
	(b)	State significance of positive and zero sequence components.	(2)
	(c)	Define short circuit capacity of a bus.	(2)
	(d)	Compare G-S & N-R method of load flow analysis.	(2)
	(e)	Define a primitive network.	(2)
	(f)	What do you mean by acceleration factor?	(2)
	(g)	What are the functions of an energy control centre?	(2)
	(h)	Explain RTU in brief.	(2)
	(i)	For a star-delta transformer with star grounded, draw zero sequence impedance diagram.	(2)
	(j)	What do you mean by a flat voltage start?	(2)
		<u>PART -2</u>	
Q2	(a)	A 3-phase, 37.5 MVA, 33kV alternator having X_1 =0.18p.u and X_0 =0.12p.u, X_2 =0.15p.u based on its rating is connected to a 33kV overhead line having X_1 =6.1 Ω , X_2 =5.3 Ω and X_0 =12.2 Ω per phase. A single line to ground fault occurs at the remote end of a line. The alternator neutral is solidly grounded. Calculate the fault current.	(6)
	(b)	Derive the expression for three phase power in terms of symmetrical components.	(4)
Q3	(a)	Write and algorithm and flow-chart for Newton-Raphson method of load flow analysis when the system contains all types of buses.	(10)
Q4	(a) '	Draw a diagram showing interconnection of sequence networks for a single line to ground fault. Derive the necessary equations for the sequence currents.	(6)
	(b)	In a three phase system the phase voltages are given by Va=300/120°, Vb=200/90°, Vc=100/230°. Obtain the symmetrical components for a set of given unbalanced voltages.	(4)
Q5	(a)	Assemble the Z_{bus} matrix for the network shown in figure.	(6)
	(b)	Prove that in a bus admittance matrix, each diagonal element is equal to sum of all admittances connected at node i and off diagonal element is equal to negative of admittances connected between node i and j.	

Examination Roll No..... Figure shows a five bus power system. Each line has an admittance of (0.05+j0.15)p.u. The (10) Q6 line shunt admittances may be neglected. The bus power and voltage specifications are given in the table: (a) Form Ybus (b) Find Q2, δ2, V3, V4 and V5 after the first iteration using Gauss Seidel method. Assume Q_{2,min}=0.2pu Q_{2,max}=0.6pu Bus PL Q_L P_G Q_G Bus specification 1.0 0.5 ? 1.020° Slack bus 0 1.02 PV bus 3 0.2 0.5 0 ? PQ bus 4 0.5 0.2 0 0 ? PQ bus 0.5 0.2 0 ? PQ bus Q7 Write short notes on: (a) SCADA and its applications (5) (b) Various operating states of a power system