YMCAUST -MAY 2018

B.Tech., IV SEMESTER

Digital Electronics (E-208)

Time: 3 Hours

Instructions:

It is compulsory to answer all the questions (2 marks each) of Part -A in short.
Answer any four questions from Part -B in detail.
Different sub-parts of a question are to be attempted adjacent to each other.

Max. Marks: 60

PART -A

-

Q1 (a)	Convert the binary number 1101.0101 into decimal.	(2)
(b)	How many bits are required to distinguish 108 distinct objects?	(2)
(c)	What do you understand by minterms?	(2)
(d)	What are applications of decoders?	(2)
(e)	What is latch?	(2)
(f)	Which is the fastest logic family?	(2)
(g)	Give the specifications of analog to digital converters.	(2)
(h)	What is dynamic RAM?	(2)
(i)	Draw the circuit of sample and hold circuit.	(2)
(i)	Give the truth table of JK flip-flop.	(2)

PART -B

Q2	(a)	Explain the different type of binary codes.	(5)
	(b)	Implement the AND, OR and NOT operations using NAND gates.	(5)
03	(a)	Minimize the function $F(A,B,C,D) = \sum m(0,1,2,3,7,8,9,10,11,12,13)$ using K-map.	(5)
	(b)	Minimize the function $Y(A,B,C,D) = \sum m(0,1,3,7,8,9,11,15)$ using Quine-Mclusky metode.	(5)
Q4		Design the full adder and full subtractor using NAND gates.	(10)
Q5	(a)	Draw and explain the circuit of ECL logic family.	(5)
	(b)	Draw and explain the circuit of weighted resister digital to analog converter.	(5)
Q6	(a)	Design a 3-bit ripple counter using JK flip-flop.	(5)
	(b)	Convert SR flip-flop into JK flip-flop.	(5)
Q7		Write the short notes on (1) PLA (2) FPGA.	(10)
