Find the response of a network if $H(s) = \frac{s^2 + 3s + 2s}{(s+1)(s+2s)}$ and excitation is $x(t) = e^{-3t}$.

a) Explain the concept of power triangle (5) CO3

b) Obtain the T parameters of the network in terms

Roll No.

Total Pages: 5

307301 advantages of three phase systems

December, 2019

B.Tech. (EL/EEE)- III SEMESTER ELECTRIC CIRCUIT ANALYSIS (ELPC301)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) What do you mean by an electric network and an electric circuit? (1.5) CO1
 - (b) Find the voltage at the terminals of a coil having $R = 10 \Omega$ and L = 15H at the instant when the current is 10A and increasing @ 5 A/sec. (1.5) CO2
 - (c) What is the phase difference between voltage and current in an RC circuit? (1.5) CO3
 - (d) Derive the condition on Z parameters for a reciprocal network. (1.5) CO4
 - (e) Explain the concept of source transformation.

(1.5) CO1

307301/180/111/243

[P.T.O. 23/12

- (f) Time constant of RL circuit is given by L/R. Show that the unit of L/R is second. (1.5) CO2
- (g) State the advantages of three phase systems.

(1.5) CO3

(h) Express Y₂₁ in terms of ABCD parameters.

(1.5) CO4

(i) State convolution property of Laplace Transform.

(1.5) CO2

(j) Derive the relation between the mutual inductance M and self-inductance of coils L_1 and L_2 . (1.5) CO3

PART - B

- 2. (a) Derive the condition for maximum power transfer
 - (b) In the circuit shown below the resistance R is changed from 10 ohms to 5 ohms. Verify the compensation theorem. (8) CO1

3. (a) In the network shown below the switch is closed at t = 0 and there is no initial charge on either of the capacitances. Find $i_1(t)$. (8) CO2

- (b) Prove that for an RLC series circuit the resonant frequency is geometric mean of upper and lower half power frequencies.

 (7) CO2
- 4. (a) In the circuit shown below the reactance of the capacitor is C₁ is 4 ohms, the reactance of capacitor C₂ is 8 ohms and the reactance of inductor L is 8 ohms. A sinusoidal voltage of 120 V is applied to the circuit. Find
 - (i) the current in each branch.
 - (ii) Power loss in the circuit.

(15) CO3

- 5. (a) Prove that overall Y parameters matrix for parallel connected two port network is simply the sum of Y parameters matrices of each individual to port network connected in parallel. (7) CO4
 - (b) Obtain the Z parameters of the network shown below

(8) CO4

6. (a) Obtain the Thevenin equivalent circuit at terminals B of the active network. (8) CO1

- (b) Find the response of a network if $H(s) = \frac{s^2 + 3s + 5}{(s+1)(s+2)}$ and excitation is $x(t) = e^{-3t}$. (7) CO2
- 7. (a) Explain the concept of power triangle. (5) CO3
 - (b) Obtain the T parameters of the network in terms of all other parameters. (10) CO4