(ii) What will be the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ along the major axis.
7. (a) Let $f: R^{2} \rightarrow R$ be defined by setting

$$
f(x, y)=\frac{x y}{\sqrt{\left(x^{2}+y^{2}\right)}}
$$

when $(x, y) \neq(0,0), f(0,0)=0$
Show that f_{x} and f_{y} exist at $(0,0)$, also, check that the continuity of the function f at origin.
(b) Find the equation of the evolute of the parabola $y^{2}=4 a x$.

Roll No. \qquad

April 2022

B.Tech. (RAI/ME)-l SEMESTER

Mathematics-I (Calculus and Linear Algebra) (BSC-103A)

Time : 3 Hours]
[Max. Marks : 75

Instructions :

1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
2. Answer any four questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Describe rank of a matrix A with numerical example.
(b) State Rolle's Theorem.
(c) Expand the function $\log x$ using Taylor series. (1.5)
(d) What is relation between Beta and Gamma function.
(e) Find the radius of convergence of the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{n} \tag{1.5}
\end{equation*}
$$

020101/420/111/19
19 [P.T.O.
(f) Explain Fourier series of a function.
(g) If $u=f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then find the value of

$$
\begin{equation*}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} . \tag{1.5}
\end{equation*}
$$

(h) Find the divergence of the vector $\vec{V}=x y z$.
(i) Explain Eigenvalues and Eigenvectors of square matrix A.
(j) What are the Eigenvalues of the Hermitian matrix.

PART-B

2. (a) For what values of k, the equations

$$
x+y+z=1,2 x+y+4 z=k
$$

and $4 x+y+10 z=k^{2}$ have
(i) a unique solution,
(ii) infinite number of solutions,
(iii) no solution,
and solve them completely in each case of consistency.
(7)
(b) If $A=\left[\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right]$,
then find the Eigen values of $A^{2}-2 A+\mathrm{I}$.
3. (a) Find the extreme values of the function $f(x, y)=x^{3}+y^{3}-12 x-3 y+20$.
(b) Find a unit normal to the surface $x y^{3} z^{2}=4$, at the point $(-1,-1,2)$.
4. (a) Find the Fourier series for the function $f(x)=x^{2}$, $-\pi<x<\pi$. Hence, show that

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6} . \tag{7}
\end{equation*}
$$

(b) Test the convergence of the following series
(i) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{-n^{2}}$.
(ii) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$.
5. (a) What will be the value of c of Lagrange's mean value theorem for the function $f(x)=x^{3}+x$ in $[1,2]$.
(b) Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(\sec x)^{(\cot x)}$.
6. (a) Will the improper integral $\int^{\infty} \frac{\log x}{x^{2}}$ be convergent or not?
(b) (i) Find the value of $\int_{0}^{1} x^{7}(1-x)^{6} d x$.

