80642

B.Tech. (ECE, EIC) IVth Semester COMPUTATIONAL TECHNIQUES (HAS-206C)

Time : 3 Hours]

[Max. Marks : 75

Instructions :

(i) All questions are compulsory in Part-I.
(ii) Attempt any four questions from Part-II.

PART-I

1. (a) If $u=\frac{4 x^{2} y^{3}}{z^{4}}$ and error in x, y, z be 0.001 , compute the relative maximum error in u when $x=y=z=1$.
(b) Write the formula of stirling method for interpolation.
(c) Construct a forward difference table for the following :

$x \quad$	0	1	2	3	4

$f(x): \begin{array}{llllll}1 & 1.5 & 2.2 & 3.1 & 4.6\end{array}$
(d) Solve $e^{-x}-x=0$ by secant method.
(e) Write the formula for Weddle's and Boole's rule.
(f) Write the procedure to solve the simultaneous system of equation with the help of Relaxation method.
(g) Write the formula for Euler's and Modified Euler's method.
(h) Explain Crank-Nicolson method.
(i) Find by Taylor's series method, the value of y at $x=0.1$, $x=0.2$ to five decimal places from

$$
\frac{d y}{d x}=x^{2} y-1, \text { given } y(0)=1 .
$$

(j) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using Trapezoidal Rule.

$$
(1.5 \times 10=15)
$$

PART-II

2. (a) Interpolate by means of Gauss' backward formula, the population of a town for the year 1974, from the given data.

Year	1939	1949	1959	1969	1979	1989
Population	12	15	20	27	39	52

(b) From the following table, find $f(x)$ as a polynomial in x and find $f(x)$ using Newton's divided difference formula.

x	$:$	4	5	7	10	11	13
$f(x):$	48	100	294	900	1210	2028	

3. (a) Find the root of equation $x=\frac{1}{2}+\sin x$ by using iteration method.
(b) Find the real root of equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.
4. Solve the following system of equations by using Gauss-Jacobi and Gauss-Seidel methods (correct to three decimal places) :

$$
\begin{align*}
& 8 x-3 y+2 z=20 \tag{15}\\
& 4 x+11 y-z=33 \\
& 6 x+3 y+12 z=35
\end{align*}
$$

5. (a) Use Romberg's integration method to find $\int \frac{d x}{1+x^{2}}$ correct to four decimal places
(b) Find the integral $\int \frac{e^{1}+e^{-1}}{2}$ using Simpson's $1 / 3 \mathrm{rd}$ and 38 th rule by taking $h=0.2$.
6. Using RK method of order four, compute $y(0.2)$ and $y(0.4)$ from $10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$, taking $h=0.1$. (15)
7. Solve the elliptic equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(Laplace equation) for the following square mesh with boundary values as shown:

