YMCA University of Science and Technology, Faridabad
 B.Tech (EL,ECE,EIC) ((4th Semester) (Under-CBS Scheme)

Computational Techniques (E-206)May-2018
M.Marks:60

Time:3hrs
Note: All questions are compulsory in Part-I

Attempt any four questions from Part -II

Part-I

Que1.(a)Find the relative error in calculation of 7.342/0.241.Numbers are correct to three decimal places. Determine the true smallest interval in which true result lies.
(b)Write the formula for Gauss backward interpolation.
(c) Prove E = $e^{h D}$
(d) Find the root of $x^{3}-4 x-9=0$ using Bisection method.
(e)Integrate numerically $\int_{0}^{\pi / 2} \sqrt{\cos \theta} d \theta$.
(f)Using Taylor's series method, solve dy/dx $=x y+y^{2}$, at $x=0.1$, given $y(0)=1$.
(g)Find the real root of the equation $x^{3}-2 x-5=0$ by the method of false position.(upto three stage only).
(h)Write the formula for simpson's $1 / 3^{\text {rd }}$ and simpson's $3 / 8^{\text {th }}$ rule.
(i)Use Euler's method to find the approximate value of y when $x=0.4$, if $\mathrm{dy} / \mathrm{dx}=1-2 \mathrm{xy}$, given that $\mathrm{y}=0$ when $\mathrm{x}=0$ and $\mathrm{h}=0.2$
(j)Describe Dufort and Frankel method.

Part-II

Que.2(a) Use Lagrange's interpolation formula to find the value of $f(x)$ corresponding to $x=27$ from the following data:

$$
\begin{array}{lclll}
\mathrm{x} & : 14 & 17 & 31 & 35 \\
\mathrm{f}(\mathrm{x}) & : 68.7 & 64 & 44 & 39.1
\end{array}
$$

(b)Using Newton's forward interpolating formula, find y at $\mathrm{x}=8$ for the following:
$\mathrm{x}: 0$
5
10
15
20
25
y: 7
11
14
18
24
32

Que.3(a)Find the root of the equation $\mathrm{xe}^{\mathrm{x}}=\cos \mathrm{x}$ using secant method.
(b)Using Newton- Raphson method, find the real root of the equation $3 x=\cos x+1$ correct to four decimal places.

Que. 4 Solve the given system of equation using Relaxation method:

$$
\begin{equation*}
12 x+y+z=31,2 x+8 y-z=24,3 x+4 y+10 z=58 . \tag{10}
\end{equation*}
$$

Que.5(a)Evaluate $\int_{0}^{10} e^{x} d x$, using weddle's rule, $(\mathrm{h}=1)$.
(b)Evaluate $\int_{4}^{5.2} \log x d x$ using Trapezoidal rule.

Que. 6 Using Milne's predictor-corrector method, find the solution of $d y / d x=x-y^{2}$ at $x=0.8$, given :
x : 0
0.2
0.4
0.6
y: 0.0
0.02
0.0795
0.1762

Que. 7 Solve the equation $u_{x x}+u_{y y}=0$ for the given square mesh with the given boundary values.

