Y.M.C.A. UNIVERSITY OF SCIENCE AND TECHNOLOGY, FARIDABAD B.TECH. (EIC)-IV SMESTEREXAMINATION (UNDER CBS), CONTROL SYSTEM -1 (EIC-210)

C=Mag

Max Marks:-60

Time: 3hrs

Note:- 1. Part-A is compulsory and attempt 4 Questions from Part-B.

2. Assume relevant data/figure if found missing.

	PART-A	(00)
Q.1.a	Explain the term servomechanism.	(02)
Q.1.b	What is the physical meaning of overdamped, underdamped and critically damped	(02)
	control system? What is the final value theorem of transfer function? What is the condition under which	(02)
. 1. I. I	this measurem is valid? What is the most noticeable effect of zeros in the Right half s plane on the step response	(02)
) 1.e	of II order system? Give physical significance of i) poor phase margin and infinity gain margin, ii) poor	(02)
().1.1		(02)
Q.1.		(02)
	Control system Doline state transition matrix. What is its significance	(02)
Q 1. Q.,	Dot ne state transition matrix. What is its eigenmean $G(s)H(s) = \frac{1}{(1+T_1S)(1+T_2S)}$	(02)
().1.	What is the physical meaning of Absolute and relative stability of the system	(02)
(7.1.	PART B	
0.2.	Explain the effect of negative feedback on the parameters variation of the control system?	(4)
0.2	Write short note on Stepper motor and its application.	(4)
Q.3.	2. C. i. af the system shown in figure given below	(1)
	$\frac{M_1}{M_1}$	(4

1

3.b Us blo	ing Mason's gain formula, determine the ratio of C/R for the system represented by bock diagram given below $-H_3$ G_4 G_5 I_6 G_5 I_6 G_5 I_6 G_6 G_7 G_8	6
Q.4.a	A unity feedback system is characterized by an open loop transfer function $G(s) = \frac{k}{s(s+10)}$ Determine the gain k so that the system will have a Damping ration of 0.5. For this value of k, determine settling time, peak overshoot and time to peak overshoot for a unit step input	(10)
Q.5. a	A system is represented by the state and the output equations given below. Find	(5)
Q.5.b	(i) Characteristic equation (ii) the poles of the system. Sketch the plot showing the magnitude in decibels and phase angle in degrees as a function of frequency in logarithmic scale for the transfer function given by $G(s) = \frac{10}{s(1+0.5s)(1+0.1s)}$ Determine the gain margin and phase margin of the system.	(5)
Q.6.a. Q.6.b.	For a system with $F(s)=s^4+22s^3+10s^2+s+k=0$.Obtain the marginal value of k and the frequency of oscillations of that value of k Sketch the root locus of the unity feedback system whose open loop transfer function is $G(s)=\frac{1}{s(s+2)(s^2+2s+10)}$	(5)
Q.7.a.		(5)
Q.7.b.	Write design procedure for phase lag compensator	(5)