6.	(a)	List the properties of region of convergence.	(4)
	(b)	Find the inverse Z transform of	(6)
		$x(z) = z(z^2 - 4z + 5)/(z - 3)(z - 1)(z - 2)$	
		with (i) $ z > 3$ (ii) $ z < 1$	
	(c)	Find Z-transform and sketch the ROC	
		$X(n) = (-1)^n 2^{-n} u(n).$	(5)
7.	(a)	State and prove sampling theorem. Find the nyo	quist
		rate and nyquist interval for the following signal	1:
		$x(t) = (1/2\pi)(\cos(4000\pi t).\cos(1000\pi t)).$	(6)
		Find the Laplace transform of	
		$x(t) = 5e^{4t} + 6t^3 - 3\sin 5t + 2\cos 2t.$	(4)
		Specify all possible ROCS for the function	X(s)
		given below. Also find x(t) in each case:	
		X(s) = 4s/(s+2)(s+4).	(5)
		equation:	
		$x(t) = e^{-t} \alpha(t), \ \ y(0) = +1/2, \ \ y'(0) = 1/2,$	
		following two sequences using analytical m	

Roll No. Total Pages: 4

306301

December, 2019 B.Tech. (EIC) 3rd SEMESTER Signal and Systems (ECC-01)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART - A

- 1. (a) Distinguish between energy and power signal. (1.5)
 - (b) State mathematical expression for unit step and rectangular signals. (1.5)
 - (c) Define unit impulse function and find its fourier transform. (1.5)
 - (d) List the merits and limitations of fourier transform.

(1.5)

- (e) Define causal and non-casual system. (1.5)
- State initial and final value theorem of laplace transforms. (1.5)
- Find the laplace transform of unit step function. (1.5)
- Explain significance of pole zero plot. (1.5)
- Described the properties of state transition matrix. (1.5)
- State Parseval's theorem. (1.5)

PART - B

- (a) Define a signal and system. Explain any two properties of a system.
 - (b) Test y(t) = x(2t), whether the system is (i) linear (ii) time variance (iii) stable. (5)
 - (c) Plot the signal with respect to time

$$x(t) = u(t) - r(t - 1) + 2r(t - 2) - r(t - 3) + u(t - 4) - 2u(t - 5)$$

State whether the signal is energy or power signal? Find corresponding energy or power as the case may be. To applicational box stirrent and said top (5)

- (a) Find the convolution of $x(n) = \{1 \ 2 \ 3 \ 4\}$ and 3. $h(n) = \{5 \ 4 \ 3 \ 2 \ 1\}. \tag{6}$
 - (b) Compute the output y(t) for an continuous time LTI system whose impulse response h(t) and its input x(t)are given by $h(t) = e^{-t} \cdot u(t)$, x(t) = u(t) - u(t-2).

(6)

- (c) Prove the following: $x(n)*[h_1(n) + h_2(n)] = x(n)*h_1(n) + x(n)*h_2(n).$
- (a) State and prove the following properties of DTFT (i) Frequency differentiation (ii) Convolution.
 - (b) Find the Fourier transform of $x(t) = e^{-at}.u(t)$. Also plot magnitude and phase spectrum. (5)
 - (c) Find the Fourier transform of Gaussian pulse. (4)
- 5. Find the output, given the input and initial conditions, for the system described by the following differential equation:

$$x(t) = e^{-t} \cdot u(t), \quad y(0) = -1/2, \quad y'(0) = 1/2,$$

 $y''(t) + 5y'(t) + 6y(t) = x(t).$ (5)

(b) Perform the 4 points circular convolution of the following two sequences using analytical method:

$$x_1(n) = \{1 \ 2 \ 2\}, \ x_2(n) = \{1 \ 2 \ 3 \ 4\}.$$
 (10)