YMCA UNIVERSITY OF SCIENCE \& TECHNOLOGY, FARIDABAD

B.TECH EXAM ${ }^{\text {th }}$ SEMESTER (UNDER CBS), DEC 2016

ANALYSIS \& DESIGN OF ALGORITHMS CE-307
Time: 3 hrs

Note: Part-1 is compulsory.
In Part-II, attempt 4 questions out of 6.

Part-I
Q. No. 1
a. Solve the following recurrence relation:

$$
T(n)=T\left(n^{1 / 2}\right)+c \text { for } n>1
$$

b. Write the general algorithm for Divide and Conquer method.
c. Differentiate between upper bound and lower bound of time complexity, discuss with example.
d. What are the two way in which a graph can be represented, discuss.
e. Discuss the time complexity of Prim's method.
f. For which type of problems Backtracking approach is generally used, discuss
g. Discuss the time complexity of All Pair Shortest Path problem.
h. Differentiate between P and NP-problems.
i. Which approach among Greedy and Dynamic method is better and why?
j. Compare the time complexity of Single Source Shortest Path problem if solved by dynamic method and Greedy method.

Part-II *

Q. No. 2 Discuss Quick Sort technique can be used for sorting a list. How much time is required for the various steps involved in the sort? Analyze the time complexity of algorithm in best, average and worst cases.
Q. No. 3 What is the solution generated by the Job sequencing with deadlines algorithm when $n=7, p=(3,5,20,18,1,6,30)$ and $d=(1,3,4,3,2,1,2)$?
Q. No. 4 Write the recursive backtracking algorithm for sum of subset problem and
also solve the following:-

$$
W=\{5,7,10,12,15,18,20) \text { and } m=35
$$

If the given set W is arranged in ascending order or descending order then is there any noticeable difference in computing time?
Q.No. 5 Consider five items along with their respective weights and profits :

$$
W_{i}=(5,10,20,30,40)
$$

$$
P_{i}=(30,20,100,90,160)
$$

The Knapsack has capacity, $m=60$, Find out the solution to the fractional Knapsack problem using Branch and Bound method
Q. No. 6 Discuss any two of the following problems and analyze them:
a. $0 / 1$ Knapsack Problem (using dynamic programming)
b. Hamiltonian problem (using backtracking)
c. NP-Hard and NP-Complete
Q. No. 7 Differentiate between Deterministic and Non-Deterministic algorithms. Write a \therefore Deterministic algorithm to sort an array and convert the sarrie"fnto a NonDeterministic algorithm.

