

YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY, FARIDABAD B.TECH EXAMINATION (Under CBS)

ADVANCED COMPUTER ARCHITECTURE (CE-401)

Time: 3 hrs M. Marks: 60

Note: Part-1 is compulsory. Attempt any four questions out of six from part-2.

PART-1

- Q. No. 1(a) Differentiate between computer organization and computer architecture.
 - (b) Why 2's complement addition is used for subtraction?
 - (c) What are the vertical and horizontal microinstructions?
 - (d) How system attributes influenced the performance factors?
 - (e) Define computational granularity and computation latency.
 - (f) Explain the write-through and write-back polices used in cache memory.
 - (g) What are the various memory replacement policies?
 - h) What is a scalar processor?
 - (i) Draw the pipeline execution of VLIW architecture with degree (m=3)
 - (j) What is the SIMD and MIMD Flyn's computers classification?

[10x2=20]

PART-2

- Q. No. 2(a) Write the R/M code to execute the statements A := B + C, where A,B and C are normalized, short floating point numbers (.F) resident in memory with base address #D . [3+7=10]
 - (b) Develop the detailed instruction timing for the code in problem 2(a) using we mapped machine.
- Q. No. 3(a) Explain the inclusion, coherence and locality of reference property associate with memory hierarchy design. [5]
 - (b) What are multiprocessors and multicomputer? Explain in details

[5]

- Q₁₀ No.4(a)A wafer has diameter of 21 cm and costs \$5,000 for a particular production run. Compute the cost per die for die area = 2.3 sq.cm and for 1 sq.cm if ρD =1 defect/sq.cm.
 - (b) What is grain scheduling? Compare control versus data flow mechanisms. [5]
- Q. No.5(a) Explain the Hellerman's and streckers's models associated with processor-memory interaction. [5]
 - (b) A 40-MHz processor was used to execute a benchmark program with following instruction mix and clock cycle count:

Instruction type	Instruction count	Clock cycle count
Integer arithmetic	45000	1
Data transfer	32000	2
Floating point	15000	2
Control Transfer	8000	2

Determine the effective CPI, MIPS rate, and execution time for this program. [5]

Q. No. 6(a) Perform a data dependence analysis on each of the following program fragments. Show the dependence graphs among the statements with justification. [5]

P1: C=D * E:

P2: M=G+C;

P3: A=B+C;

P4: C=L+M:

P5: F=G/E

- (b) Explain and compare the architecture of RISC and CISC processors.
- Q. No. 7(a) Consider a cache consisting of 256 blocks of 16 words each, for a total of 45 words, and assume that the main memory is addressable by a 16 bit address and it consists of 4k blocks. How many bits are there in each of the TAG, BLOCK/SET and WORD fields for different mapping techniques [5]
 - (b) Write in brief about.

[5]

(i) Vector processors

(ii) Symbolic processors