
DESIGN OF SOFTWARE TESTING TECHNIQUES

IN AGILE DEVELOPMENT

THESIS

submitted in fulfillment of the requirement of the degree of

DOCTOR OF PHILOSOPHY

to

 YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY

by

ANITA

Registration No. YMCAUST/PH11/2010

Under the Supervision of

DR. NARESH CHAUHAN

PROFESSOR

Department of Computer Engineering

Faculty of Engineering & Technology

YMCA University of Science & Technology

Sector-6, Mathura Road, Faridabad, Haryana, India

 AUGUST, 2016

 i

CANDIDATE’S DECLARATION

I hereby declare that this thesis entitled DESIGN OF SOFTWARE TESTING

TECHNIQUES IN AGILE DEVELOPMENT, being submitted in fulfillment of the

requirements for the Degree of Doctor of Philosophy in DEPARTMENT OF COMPUTER

ENGINEERING under Faculty of ENGINEERING & TECHNOLOGY of YMCA

University of Science & Technology Faridabad, during the academic year 2011-2016, is a

bona fide record of my original work carried out under guidance and supervision of DR.

NARESH CHAUHAN, PROFESSOR, COMPUTER ENGINEERING and has not been

presented elsewhere.

 I further declare that the thesis does not contain any part of any work which has been

submitted for the award of any degree either in this university or in any other university.

(ANITA)

Registration No. YMCAUST/PH11/2010

 ii

CERTIFICATE OF SUPERVISOR

This is to certify that the thesis entitled “DESIGN OF SOFTWARE TESTING

TECHNIQUES IN AGILE DEVELOPMENT” by ANITA submitted in fulfillment of the

requirement for the award of Degree of Doctor of Philosophy in DEPARTMENT OF

COMPUTER ENGINEERING under Faculty of ENGINEERING & TECHNOLOGY of

YMCA University of Science & Technology Faridabad, during the academic year May 2011-

Aug 2016, is a bonafide record of work carried out under my guidance and supervision.

I further declare that to the best of my knowledge, the thesis does not contain any part of any

work which has been submitted for the award of any degree either in this university or in any

other university.

(Signature of Supervisor)

DR. NARESH CHAUHAN

PROFESSOR

Department of Computer Engineering

 Faculty of Engineering & Technology

YMCA University of Science & Technology Faridabad,

Dated: August , 2016

 iii

ACKNOWLEDGEMENT

I am thankful to God for all of His Blessings.

I would like to express my sincere gratitude to my supervisor, DR. NARESH CHAUHAN, for

giving me the opportunity to work in this area. It would not have been possible for me to take

this thesis to this level without his innovative ideas, support and encouragement. He provided me

continuous guidance, valuable advice, constructive criticism throughout the span of this course.

He gave me the opportunity to learn various new things, and taught me a lot about research,

teaching, and life.

I would like to thank my batchmates cum Faculty member, Ms. Rashmi Popli and Mr. Harish

Kumar, and all other faculty members at YMCA University of Science & Technology for their

valuable technical discussions and cooperation. I am also thankful to family members of Dr.

Naresh Chauhan who helped me indirectly in completing my research work.

I am thankful to my mother and grandparents for their love, encouragement, and support

throughout my education.

I am also thankful to my family and friends for their continuous and valuable support for

motivating me time to time.

A word of special thanks to my father Sh. Nand Lal who made many compromises to let me

start and finish my Ph.D. I am thankful to him for his never-ending patience, guidance and

support. Without his blessings this thesis would not have been completed.

Thanks to all of you!

(ANITA)

 iv

ABSTRACT

The long term goal of customer satisfaction is the main concern for any service provider

in the software industry. More specifically, the team has to put on more efforts for reaching to

that particular level. In an Agile software development, small team which is committed to small

duration sprint handles several challenges while delivering deliverable to the client. On the other

side, frequent changes are added by the client so as to have product which is as per the market

standard or competitor product’s feature. These changes may bring along additional burden for

the team. This burden may be in terms of test suite management, working in distributed

management. For handling, test suite management, an Agile testing life cycle has been proposed

which is focused on regression testing.

In Agile, changes are framed into user story for the sprint and then there is a need to

analyze these framed user stories so as to have effective test suite management. This test suite

management is based on the proposed testing scenarios used in the Agile development

environment. The proposed scenario is scattered among various testing activities/types which are

performed by all team members collectively as compared with traditional software development

testing scenario.

In Agile, team works in pair programming style of culture under the supervision of

Scrum master in SCRUM methodology. When XP methodology is used then self organizing

principle is followed. Using pair programming and refactoring practices in distributed

environment, simplified processes are adopted by distributed stakeholders. Further, for pair

programming practice, a pair may be formed using proposed technique which is based on self

centric approach. Furthermore, usage of refactoring has been extended using object oriented

principles. This proposed extension comprises simplification of code for future scalability which

is based on changes proposed by client. The post simplification step includes test suite/case

management. The test suite/case management has been implemented using three test case

prioritization techniques.

The first proposed technique is based on pre-identification of risk for user stories and

which further laid to prioritization of these user stories and further, prioritization of their test

cases. The second proposed technique for test suite management is based on proposed test

pattern for common problem of test suite management. This approach is based on the object

 v

linkages among primary and secondary classes. Further, dependence diagram has been used for

identifying dependencies among dependent set of classes.

The last approach for test case prioritization is based on linguistic parameters such as

noun, verb and punctuations. Using punctuations or pauses in the user story, user stories can be

prioritized. Generally, more pauses in a user story means more linkages and more effort required

for handling more issues for these more linkages. After prioritizing user stories, next step is to

manage test cases of these user stories using nouns and verbs identification in the respective user

stories. Further, after identifying nouns and verbs in the user stories, sentence priority score may

be calculated which is based on story point of the user story, customer priority, number of nouns

and number of verbs in the test cases of the user stories.

Furthermore, the effectiveness of proposed test case prioritization has been proved using

average percentage of fault detection.

 vi

TABLE OF CONTENTS

Candidate’s Declaration i

Certificate of Supervisor ii

Acknowledgement iii

Abstract iv

Table of Contents v

List of Tables vi

List of Figures vii

List of Abbreviations viii

CHAPTER 1: INTRODUCTION 1

1.1 Agile Software Development 1

1.2 Motivation And Goals 2

1.3 Challenges Related To Testing In Agile Distributed Environment 3

1.4 Organization of Thesis 4

CHAPTER 2: LITERATURE SURVEY 7

 2.1 Introduction 7

 2.2 Software Development Life Cycle (SDLC) 7

 2.2.1 Linear Sequential Model 8

 2.2.2 Prototyping Model 8

 2.2.3 Iterative Incremental Model 9

 2.2.4 Spiral Model 10

 2.3 Agile Development Approach 11

2.3.1 History and Basic Principles of Agile 12

2.3.2 Guidelines For Creating Agile Environment 14

 2.4 Agile Software Development Life Cycle 18

 2.5 Agile Practices 21

 2.5.1 Pair Programming 22

 2.5.2 Test Driven Development (TDD) 23

 vii

 2.5.3 Collective Ownership 23

 2.5.4 Continuous Integration 23

 2.5.5 Planning Game 23

 2.5.6 Refactoring 23

2.6 Scrum 24

2.7 Color Coding Scheme For Bug Tracking 24

2.8 Testing Quadrant Matrix 25

2.9 Traditional Risk Register 26

2.10 Regression Testing 27

2.11 Communication in Distributed Environment 30

2.11.1 Communication 32

2.11.2 User Story 37

2.11.3 Modified User Story 38

 2.12 Linguistic Parameters 43

CHAPTER 3: AGILE TESTING LIFE CYCLE 45

 3.1 Introduction 45

 3.2 Agile Testing Life Cycle 46

 3.2.1 Agile Inner Testing 50

 3.2.2 Online Bug Tracker 51

 3.2.3 Sprint Flow Diagram 52

 3.2.4 Benefits of Agile Testing Life Cycle 55

 3.3 Conclusion 56

CHAPTER 4: AGILE TESTING IN DISTRIBUTED ENVIRONMENT 57

 4.1 Introduction 57

 4.2 Agile Testing in Distributed Environment 58

 4.3 Proposed Framework for Distributed Environment 59

 4.4 Pair Programming In Distributed Environment 62

 4.4.1 Proposed Buddy Identifier 62

 4.5 Refactoring in Distributed Environment 67

 viii

 4.6 Refactoring Example 68

 4.7 Benefits 71

 4.8 Conclusion 72

CHAPTER 5: AGILE REGRESSION TEST SELECTION TECHNIQUE 73

5.1 Introduction 73

5.2 Proposed Approach for Regression Test Selection 74

5.3 Case Study 75

 5.4 RTS Tool 83

 5.5 Conclusion 83

CHAPTER 6: AGILE REGRESSION TEST CASE PRIORITIZATION 87

6.1 Introduction 87

6.2 Proposed Risk Based TCP Technique 88

 6.2.1 User Story Graph 89

6.2.2 Complete User Story Matrix 91

6.3 Outcomes 96

6.4 Proposed Pattern based TCP Technique 98

6.4.1 Proposed “Test” Pattern 99

6.4.2 Case Study 101

6.4.3 Results & Analysis 104

6.4.4 Phases in Test Pattern 106

 6.5 Linguistic Based Object Oriented TCP Technique 107

6.5.1 Story Prioritization 109

6.5.2 Case Study 111

6.5.3 Implementation 122

 6.6 Conclusion 127

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 129

REFERENCES 131

 ix

LIST OF TABLES

Table Page No.

Table 2.1 Comparison Chart 11

Table 2.2 Agile Terminology 16

Table 2.3 Actor Activity Chart 21

Table 2.4 Task Chart 34

Table 2.5 User Stories 42

Table 3.1 Agile Testing Abbreviations 48

Table 3.2 Online Bug Tracker 51

Table 4.1 Testing Abbreviations 69

Table 5.1 Requirements 76

Table 5.2 Non-Existing Edges 79

Table 5.3 Existing Edges 80

Table 5.4 Optimal Path 81

Table 5.5 Second Level Optimization 82

Table 6.1 Story Effort 90

Table 6.2 First Level Dependence Matrix 91

Table 6.3 Questions-Volatility Rate 92

Table 6.4 Questions-Implementation Dependency 93

Table 6.5 Effort Data 94

Table 6.6 Complete User Story Matrix 96

Table 6.7 Risk Measure Matrix 97

Table 6.8 Test Pattern 100

Table 6.9 Dependence Diagram 104

Table 6.10 Story Board 105

Table 6.11 Generated Test Suite 106

Table 6.12 New Test Suite 106

Table 6.13 User Requirements 112

Table 6.14 Noun table 112

Table 6.15 Verb Table 112

 x

Table 6.16 Ready Story 1- Acceptance Criteria 113

Table 6.17 Ready Story 2- Acceptance Criteria 113

Table 6.18 Ready Story 3- Acceptance Criteria 113

Table 6.19 Ready Story 4- Acceptance Criteria 113

Table 6.20 Ready Story 5- Acceptance Criteria 113

Table 6.21 Ready Story 6- Acceptance Criteria 113

Table 6.22 Ready Story 7- Acceptance Criteria 114

Table 6.23 Ready Story 8- Acceptance Criteria 114

Table 6.24 Ready Story-Noun Table 114

Table 6.25 Ready Story-Verb Table 114

Table 6.26 New Requirement 115

Table 6.27 New Requirement- Noun Table 115

Table 6.28 New Requirement- Verb Table 115

Table 6.29 Ready Story 9- Acceptance Criteria 115

Table 6.30 New Ready Story-Noun Table 115

Table 6.31 New Ready Story-Verb Table 115

Table 6.32 Noun Dependent Story Table_a 115

Table 6.33 Noun Dependent Story Table_b 116

Table 6.34 Verb Dependent Story Table_a 116

Table 6.35 Verb Dependent Story Table_b 116

Table 6.36 Test Cases Story 1 117

Table 6.37 Test Cases Story 2 117

Table 6.38 Test Cases Story 3 118

Table 6.39 Test Cases Story 4 118

Table 6.40 Test Cases Story 9 119

Table 6.41 Sentence Priority Score Story 9 120

Table 6.42 Sentence Priority Score Sorting 121

Table 6.43 TCP Ordering 126

Table 6.44 No Ordering 127

 xi

LIST OF FIGURES

Figure Page No.

Fig. 2.1 The Classic Waterfall Model 8

Fig. 2.2 Spiral Model 10

Fig. 2.3 Agile Methodologies 14

Fig. 2.4 Agile Manifesto 19

Fig. 2.5 Agile Life Cycle 20

Fig. 2.6 Pair Programming 22

Fig. 2.7 Scrum Life Cycle 25

Fig. 2.8 Color Coding Tracking Scheme 26

Fig. 2.9 Testing Matrix 27

Fig. 2.10 Normal Agile Testing 29

Fig. 2.11 Week Plus Testing 29

Fig. 2.12 Agile Scenario 33

Fig. 2.13 Team Communication 35

Fig. 2.14 Verbal Communication 36

Fig. 2.15 Non-verbal Communication 37

Fig. 2.16 Story Format 37

Fig. 2.17 Confirming Points 38

Fig. 2.18 Stakeholders Understanding 39

Fig. 2.19 Researcher Database 40

Fig. 2.20 Project Requirement 41

Fig. 2.21 Story Script 43

Fig. 2.22 Confirming points_10 44

Fig. 3.1 More is less 46

Fig. 3.2 Agile Testing Life cycle 47

Fig. 3.3 Regression Testing Matrix 49

Fig. 3.4 Testing Scenario in Pre-execution Phase 53

Fig. 3.5 Testing Scenario in Execution Phase 54

Fig. 3.6 Testing Scenario in Post-execution Phase 55

 xii

Fig. 4.1 Framework for Distributed Environment 61

Fig. 4.2 Ego centric graph 62

Fig. 4.3 Common Habit Representation 63

Fig. 4.4 Common Cluster 64

Fig. 4.5 South Cluster 65

Fig. 4.6 Overlapping Cluster 65

Fig. 4.7 A pair 66

Fig. 4.8 Buddy Rotation 66

Fig. 4.9 Refactoring using Object Oriented Principles in

 Distributed Environment 69

Fig. 5.1 A Path Strength based RTS Technique 75

Fig. 5.2 Weighted Story Graph 77

Fig. 5.3 Optimized Weighted Story Graph 82

Fig. 5.4 Snapshot 1 84

Fig. 5.5 Snapshot 2 84

Fig. 5.6 Snapshot 3 85

Fig. 5.7 Snapshot 4 85

Fig. 5.8 Snapshot 5 86

Fig. 6.1 Agile Environment 89

Fig. 6.2 Risk Based Model 90

Fig. 6.3 User Story Graph 91

Fig. 6.4 BFS Based Indirect Path Implementation 95

Fig. 6.5 Working Model for pattern based TCP 101

Fig. 6.6 Patent Grant Procedure 102

Fig. 6.7 Relationship Diagram 103

Fig. 6.8 Test Pattern 107

Fig. 6.9 Linguistic TCP Technique 109

Fig. 6.10 Total Punctuation 110

Fig. 6.11 Story Prioritization 111

Fig. 6.12 Sequential Approach 122

Fig. 6.13 Noun Count 124

 xiii

Fig. 6.14 Verb Count 125

Fig. 6.15 Effect 125

Fig. 6.16 Comparison 128

 xiv

LIST OF ABBREVIATIONS

Software Development Life Cycle SDLC

Software Requirements Specification SRS

Multi National Company MNC

Feature Driven Development FDD

Rational Unified Process RUP

Dynamic Software Development Method DSDM

Object Oriented Design OOD

Graphical User Interface GUI

Test Driven Development TDD

Scrum Master SM

Product Owner PO

Product Backlog List PBL

Sprint Backlog List SBL

Extreme Programming XP

Test Driven Development TDD

Information Technology IT

Sprint level regression testing SLRT

End to end regression testing EERT

Agile Software Development ASD

Client Representative CR

Voice Text Markup Language VTML

Definition Of Done DOD

Video Conference VC

Face To Face FTF

Daily Scrum Meetings DSM

Knowledge Process Outsourcing KPO

Test Case Prioritization TCP

Regression Test Selection RTS

Average Percentage Of Fault Detection APFD

1

CHAPTER I

INTRODUCTION

1.1 AGILE SOFTWARE DEVELOPMENT

Various SDLCs are available such as linear sequential model, prototyping model,

iterative and incremental model, spiral model and many more. These traditional models

follow the static working strategy in which everything is fixed for example cost of the

project, requirements or scope of the project and schedule which is to be followed during

development of the project. Moreover, duration of the project is in years. Every one of

them suffers from one or more issues.

Agile software development (ASD) [1, 25, 27, 37, 66] is amalgamation of best

practices which may be implemented by team members using Agile core values such as

commitment, communication, coordination, continuous learning and continuous

improvement. It may introduce a unique evolution of responding to change rather than

sticking to a fixed plan as it inherits the features of iterative and incremental model [59]

along with adaptability [41] and predictive feature. ASD is based on light weight

methodologies [43] having dynamic nature. Not only methodologies are dynamic rather

Agile itself is dynamic. This dynamic nature of Agile is its major strength and its

nimbleness is reflected in each and every activity which is performed before the iteration,

during the iteration and after the iteration. In short, Agile follows ‘less is more’ approach

having less number of requirements, less team members in a team, small

iterations/sprints, small duration, less documentation, small meetings and many more.

This leads to improve quality for the software products delivered to the customer. Many

software organizations have started to use Agile principles and practices for the purpose

of attaining quality in their deliverables. Largely, organizations are accepting this model

as it provides an environment to accommodate frequent changes which are as per the

market standard and as per the customer need.

Some of the popular methodologies of Agile are extreme programming (XP) [21,

34] and scrum [49]. Mostly, these methodologies are supported by pair programming,

refactoring, simple design and test driven development (TDD) [18, 20, 82]. Also, on-site

2

customer presence is one of the evolutionary steps in ASD. Frequent feedback and

frequent delivery helps in promoting long term goal of customer satisfaction.

1.2 MOTIVATION AND GOALS

 Quality is valuable to the customer as he is the major stakeholder in any

development process. Here, onus lies on development team to satisfy the customer. Also,

quality in the product is reflection of an organization. Software testing is one of the

phases of software development life cycle (SDLC) which is used by many of the software

organizations to achieve quality. In ASD, testing is not performed in single phase like

traditional models rather it is an ongoing activity, so, management of test cases is a

challenging task. Agile promotes that it is based on responding to change over following

a strict plan. The occurrence of frequent changes in Agile may have crucial aftereffects if

necessary steps are not taken at right time. Thus, cumulated test suite may become a

hurdle after number of sprints in a large scale project. So, there is a need to perform

regression testing by effective techniques so as to reduce the size of pending backlogs of

user stories and test suite respectively. Further, in distributed [39, 62] Agile, testing using

pair programming practice may be cumbersome as first team members of the pair may be

at one location and second member of the pair may be at different location. In that

scenario, other issues also arise such as language barrier, cultural barrier, time zone

barrier for doing effective communication among team members of the sprint. Therefore,

quality may lag in software products.

 The objective of this research is to improve the quality in Agile projects and

satisfy the customer by performing regression testing in distributed environment in an

efficient manner. To achieve this objective, the work on following goals has been

performed in this thesis:

 To design a transitional testing model by mentioning tester specific activities

during Agile life cycle.

 To design a framework for Agile testing in distributed environment.

 To design regression test selection (RTS) technique to manage test cases in an

Agile environment.

3

 To design test case prioritization (TCP) techniques to manage test suite of user

stories (requirements defined by customer) in distributed Agile environment.

1.3 CHALLENGES RELATED TO TESTING IN AGILE DISTRIBUTED

ENVIRONMENT

In Agile, testers work in different roles unlike traditional models. Here, tester is

involved with every stakeholder. As the number of sprints increases, test suite size also

grows, so management of test cases becomes a problem in a distributed environment. A

critical look at the available literature [40, 46, 57, 67] indicates that the following issues

need to be addressed towards testing activities in an Agile environment.

Agile testing life cycle with testing activities: The issue is how an Agile tester can

perform other activities along with testing activities. Also, sequence of various activities

along with regression testing in Agile testing life cycle is missing in the existing literature

[6, 24].

Solution: An Agile testing life cycle has been proposed wherein a tester is

interacting with all stakeholders. Specifically, tester role has been defined by mentioning

testing activities for delivering quality product to the customer. Further, the effective role

of regression testing has been identified.

Agile testing in Distributed environment: Agile testing is implemented using pair

programming practice which is followed to get the quality product. The issue is how to

perform testing when team members are not collocated or customer is not collocated.

Another issue is how to make pairs for pair programming or testing [55].

Solution: A framework for distributed environment [7] has been proposed which

involves solutions for issues which are faced by distributed team members and customer.

More specifically, refactoring [14] has been recommended for handling distributed

barriers by following simple design practice. Further, a pattern, having an evolved

solution from many best existing solutions, may be used to resolve the issue of similar

problems in distributed environment. Furthermore, for Pair testing/Pair programming, a

self centric approach (common attributes of team member) has been proposed to form a

pair among team members.

4

Regression testing in Agile environment: Since responding to change is frequent in

Agile, this may have substantial effect on the dependent modules [4, 40, 44, 57] and

accordingly number of test cases increases. Thus, need of regression testing increases.

Therefore, a regression testing technique is required for managing the increased set of test

cases.

Solution: A regression test selection technique [10] has been proposed which is

based on the user story graph, having connections among user stories. Further, two

parameters namely average path value and average path length have been used to find

an optimal path out of all the paths including non existing path and existing path in the

user story graph. Further, a tool has been designed for the proposed regression test

selection technique in Microsoft excel.

Test case prioritization in distributed environment: The issue is to manage test cases

of a sprint in distributed environment when responding to change is frequent and existing

user stories are affected because of that change [71].

Solution: A linguistic approach [8] has been proposed for test case prioritization

which is based on number of pauses identified in user stories for story prioritization and

number of noun and verbs in user stories for test cases prioritization. Further, a risk

based technique [11] has been proposed which is based on identifying high risky story

for doing prioritization of test cases. Also, a tool has been designed for the proposed test

case prioritization technique in Microsoft excel.

1.4 ORGANIZATION OF THESIS

The thesis has been organized in the following chapters:

Chapter 2: The basic concepts of traditional software development life cycles have been

briefly discussed in this chapter. Further, a detailed review of Agile software

development life cycle along with its practices has been provided. This chapter also

discloses in brief about regression testing. Moreover Communication has been discussed

from Agile point of view using Adobe Captivate Tool.

Chapter 3: An Agile testing life cycle from a tester perspective has been proposed.

Further, Sprint flow diagram in line with the Agile testing has been proposed by

considering its three phases.

5

Chapter 4: The fourth chapter is related to proposed framework for Agile distributed

environment. In this chapter, pair programming and refactoring has been discussed in

detail for managing issues of distributed environment.

Chapter 5: In fifth chapter, a Regression test selection technique has been proposed.

Further, the proposed technique has been implemented, by considering case study, using

Microsoft Excel.

Chapter 6: This chapter is related with Agile TCP techniques. Three techniques have

been proposed to manage test cases. The first technique is based on risk measure matrix.

Second technique is based on object oriented relationship and the last technique is based

on linguistic parameters such as noun and verbs. Further, effectiveness of TCP has been

proved using APFD Metric.

Chapter 7: It concludes the outcome of the work proposed in this thesis. It also

endeavors to explore the possibilities of future research work based on the proposed

design.

6

7

CHAPTER II

LITERATURE SURVEY

2.1 INTRODUCTION

The software to be released by the development team passes through several

phases and several team members of the development team work as per the assigned

tasks. These phases are milestones for looking at the intermediate progress of the

software. The collection of these intermediate stages is software development life cycle

(SDLC) for any software project. There are numerous SDLCs that are used by software

professionals since decades. Specifically, an organization may follow traditional SDLCs

like Linear Sequential Model, Prototyping Model [70], Iterative-Incremental model,

Spiral Model etc. Generally in traditional models, life cycle is properly defined and also

phases are executed by specifying needed input and output parameters from software

requirements specification (SRS) document. The description regarding all these models is

given in the subsequent sections of this chapter.

Companies have started to drift from traditional SDLCs models to Agile

environment for the purpose of attaining quality and for the sake of saving cost and time.

Agility is bringing in responsibility and ownership in individuals, which will eventually

bring out effectiveness and efficiency in software deliverables. Agile model [6] is

growing in the market at very good pace. Nimbleness nature of Agile is helpful in

frequent releases so as to satisfy the customer by providing frequent dual feedback. This

chapter is in context of traditional SDLCs, Agile, Agile terminology, Agile

methodologies, Agile life cycle [12], Agile quadrant matrix and related text.

2.2 SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Traditional methodologies create a schedule at the beginning of a project and to

stick to this schedule for the life of the software project. Complex software systems can

be built in a sequential, phase-wise manner where all of the requirements are gathered at

the beginning, all of the design is completed next, and finally the master design is

implemented into quality software. This approach conveys that complex systems can be

built in a single pass, without going back and revisiting requirements or design ideas in

8

light of changing business or technology conditions. Yet a common complaint is that the

users keep on changing their requirements. A mapping [23, 72, 73] from traditional to

Agile models is also possible.

2.2.1 Linear Sequential Model

It was first proposed in 1970 by W.W. Royce. Royce advocated iterations of

waterfalls adapting the results of the precedent waterfall. In it, development flows

steadily through requirements analysis, design implementation, coding, verification &

validation testing, and maintenance as shown in Figure 2.1. This model formed the basis

for the many software frameworks. In it, with every phase one deliverable is compulsory.

This is basically document driven model in which proper sequence is maintained.

Problem of this classic approach is mainly inflexibility which is related with change in

customer mind set by seeing changing needs of time. Also, bugs keeps on propagating

from one phase to another. On the other side, in Agile environment [52, 74, 77]

requirements keep on changing as per the market need and business value.

Figure 2.1 The Classic Waterfall Model

2.2.2 Prototyping Model

The process of this model involves many small activities viz identification of

basic requirements, developing of initial prototype, review and enhancing of prototype.

There are two types of prototyping including close-ended or throwaway prototyping and

Requirements

Design

Implementation

Verification &

Validation

Maintenance

9

breadboard or evolutionary prototyping. In the former case, prototype of the requirement

is created that will eventually be discarded rather than becoming part of the final

delivered software. The main goal of latter is to build a robust prototype in structured

manner and constantly refine and rebuilt it. This acknowledges that work on those

requirements that are well understood. The problem with this prototyping approach of

software development is the cost and time as in the former case prototype is thrown away

after reviewed by the customer. Also, presence of customer may be an issue.

In Agile way of software development [71], customer interactions are more

important and either customer or one of the representative of customer is always present

with the team members so that feedback can be received for the improvement at any time

and requirements can be modified by changing trends of market. Communication is the

basis for the good quality of the software. Also, prototype here is not created rather user

stories are developed and demo is shown to the customers.

2.2.3 Iterative Incremental Model

Incremental model is an evolution of waterfall model. The product is designed,

implemented, integrated and tested as a series of incremental builds. The Incremental

software development model may be applicable to projects where:

 Software Requirements are well defined, but realization may be delayed.

 The basic software functionality are required early.

It generates working software quickly and early during the software life cycle. It

is more flexible less costly to change scope and requirements. It is easier to test and

debug during a smaller iteration. Also, it is easier to manage risk because risky pieces are

identified and handled during its iteration. In this case, problems may arise pertaining to

system architecture because not all requirements are gathered up front for the entire

software life cycle.

In Agile context, builds are gradually created. Then review is done with the help

of demonstrations to the customer. Also, review is possible within the existing team

members or product owners.

10

2.2.4 Spiral Model

The Spiral model was first defined by Barry Boehm. It combines elements of

evolutionary, incremental, and prototyping models. The term spiral refers to successive

iterations outward from a central starting point. The goal of it is to identify risk and focus

on it early. In theory, risk is reduced in outer spirals as the product becomes more refined.

Each spiral

 starts with design goals

 ends with the client reviewing the progress thus far and future direction

 was originally prescribed to last up to 2 years

Figure 2.2 Spiral Model

The basic concepts of spiral model are planned system, system modeling,

performance evaluation, performance evaluation as shown in Figure 2.2. Major

applications of spiral model are mainly high risk projects in which requirements are not

clearly understood, architecture is not clear, quality issues, and problem in the underlying

technology. Problem with this model is its management cost as it is complex way of

software development. Also, amount of documentation required in intermediate stages is

a tough affair.

In Agile, manifesto says that working software is more desirable over

comprehensive documentation. Here, displaying of information is preferred as compared

with keeping piles of documents. A comparison [19] chart is shown below in Table 2.1.

Planned

System

Performance

Evaluation

Performance

Improvement

System

Modelling

11

2.3 AGILE DEVELOPMENT APPROACH

Agile [64] is light weight style of software development as it is document free

implementation model. Also, it does not carry with itself complexities of large system. In

Agile, small iterations/sprints are executed by following Agile Methodologies such as

XP, Scrum [62, 75], Crystal Clear [26] etc. Agile software project management is not

just departure from traditional development models or adopting Extreme Programming

[21] (XP) approach of coding. In fact, it is a holistic approach starting from formation of

project team, analysis of customer requirement (Story Telling), adopting iterative model

for design, coding, testing of small modules and frequent delivery for mutual confidence

building and easy acceptance by the customer. Agile requires motivated and trustworthy

people where team composition is of cross functional and self organizing, relying on face

to face communication when co-located and video conferencing for off shore projects.

Agile minimizes risk by developing software product through multiple deliveries in short

time unit [83] (Time Boxes) and remain flexible but stop when customer is satisfied.

Table 2.1 Comparison Chart

Parameters Spiral Agile

Risk For medium to High Risk

Projects/large scale projects

Every kind of risk is handled.

No. of team member Dynamic Static during sprint

Documentation More Very less or no documentation

iteration Longer span Small

Customer Presence Is not must Is mandatory

Requirements System Sprint

Time More Less

12

Agile methodologies [42, 76] promote project management process that

encourages stakeholder involvement, feedback, objective metrics and effective controls.

Agile presence in an organization is useful for maintaining flexible response by

accommodating last minute changes, reducing cost and enhancing quality. Although,

Agile exists since 2001 yet there is a great need of setting up standards and best practices.

Agile development [78] is the ability of developing a software sub-system quickly

and offer to the customer for using and providing feedback, while other modules/ sub-

systems are still in progress. This necessitates flexible design, commitment, ownership,

different work culture, team discipline, proper and continuous feedback from the

customer. The salient feature of Agile development is that this is an interactive process

where whatever you deliver is useful to the customer and every successive module is

well tested, efficiently integrated so that performance of earlier module does not degrade

in any way. This ensures that customer starts getting a feel of a new system very early.

The customer start getting feel of the future product/service quite early and he is quite

excited about his contribution of keeping the project on –time and in-line with the

projected requirement. The aim of Agile environment is not just to satisfy the customer

but to delight him by co-operating and accommodating his expectations’ which are

always higher than initial story/requirement.

2.3.1 History And Basic Principles Of Agile

Agile programming started in early 1990’s where concept like Extreme

Programming were adopted. It had lots of road blocks and difficulties in changing work

culture and organizational ethos. It had problems when dealing with large projects and

multi location development teams. With globalizations, number of Multi National

Company MNC want software project to be developed overseas by countries like India,

Ireland, China, Philippines and Israel.

In 2001, 17 prominent professionals/ practitioners in the field of Agile

development (then called "light-weight methods") came together at the Snowbird ski

resort in Utah , USA to discuss frameworks of creating software in a lighter, faster, more

people-centric way. They created a manifesto for Agile Software Project Management

whose principles [5] are given below:

13

 Customer satisfaction to be ensured by fast and continuous delivery of

useful software

 Working software is delivered frequently within weeks rather than

months

 Working software is the principle measure of progress

 Even belated changes in requirements are accommodated by the developer

 Close, daily cooperation between customer representative and developer

 Face-to-face conversation is the best form of communication

 Agile projects are built around motivated and disciplined individuals, who

should be trusted

 Continuous attention be paid to technical excellence and flexible design

 Simplicity in all stages ensure easy understanding among team members

as well as with customer

 Project team be cross functional and self-organizing which can to rotated

for developing various modules

 Regular adaptation to changing circumstances

These principles emphasize on face-to-face communication, and their measure of

progress is working sub-modules delivered as per time block of the iteration/sprint. Agile

methods usually produce less written documentation than other traditional methods like

Waterfall or Spiral model where customers are asked to prioritize deliverables. In Agile,

at the end of the current iteration, customer generally prefers to see working product. It

refers to a group of software development methodologies (See Figure 2.3) that promote

development iterations, open collaboration, and process adaptability throughout the life-

cycle of the project. It chooses to do things in small increments, with minimal planning,

rather than plan at length.

14

Figure 2.3 Agile Methodologies

2.3.2 Guidelines For Creating Agile Environment

Agile Terminology

Terminology and tools [32] in Agile is different from traditional terminology.

Some of the important terms which are used in Agile context are shown in Table 2.2.

Some of the terms used are:

 Sprint/Iteration A Sprint (Scrum) or iteration (XP) is a fixed period of

time (Typically 2-4 week period).

 User Story [31] Any piece of work that can be accomplished in 1

Sprint/Iteration.

 Ideal hours The number of hours of uninterrupted work. For example

there are 40 hours of calendar hours in 1 week. Not all 40 hours can be

devoted to initiative work.

 Velocity The average number of hours a team can devote to initiative

work in one sprint. (Calculated by Total number of ideal hours worked in

1 sprint divided by number of team members)

Adaptive Software
Development

(ASD)

Feature Driven
Development

(FDD)

Crystal Clear

Dynamic Software
Development

Method(DSDM)

Rational Unified
Process (RUP)

Scrum

Extreme
Programming (XP)

15

 Customer/Stakeholder Anyone who has a stake in the creation or

operation of the system.

 Stand up meetings typically happen daily where each person describes

what they did yesterday, what they are going to do today, and what road

blocks they foresee.

 Velocity Calculation Tracking work in stories allows team to track

amount of work accomplished each sprint and give an insight into

Velocity to determine how much work a team can realistically accomplish.

 Planning Tools There are tools available to run iterative development that

will allow to plan out sprints/iterations. Example Version One, Rally Dev,

index cards etc.

 Agile Project Manager Agile Project Manager is to move away from the

traditional approach of planning, preparing activity network diagram and

periodic communication to the stakeholders. A good manager must ensure

that he and his team can extract the essence of user requirement (the story

told the customer) and evolve a flexible design to remain responsive to the

changes due to technology, market trends and customer needs.

 Agile Team Size Agile team size is quite small where six to eight

members from a team sit close as a pair on one work place. Team size

relates to project size, complexity and available resources.

 Team Composition Agile teams are cross functional and self organizing

where the role of a team could be changed after two or more iterations so

that they get varied experience and no one is indispensable.

 End Date Iteration should not be allowed to keep recycling endlessly to

achieve better results. Instead, end date for every iteration must be fixed

which is called “Time Boxing” and the teams must deliver whatever they

have completed by the end date. This will bring in discipline,

commitment and also a measure of competence.

 Sprint Lock Although, there is flexibility for the customer to elaborate

their requirement as the project progresses but they should not be allowed

16

to change the requirement during iteration (time box). Locking of

requirement as given during story telling gives the development team

sense of comfort that there will be no change of direction during the of the

sub-module.

 Frequent Delivery Frequent delivery to the user of a fully tested and

running code is a must. The frequency of delivery could be two weeks and

in some cases it could be twice a week. Frequent delivery promotes

mutual confidence between the developer and the customer, which

ultimately facilitates easy acceptance of the final software product.

 Progressive and Frequent Integration In Agile working environment,

integration of various modules (iterations) should be everyday and every

week so that the sub-modules are tested progressively to build into a final

product. This will require automatic build-and-test script so that the

software testing is done easily and before close of the day, well-tested and

fully integrated codes are delivered to the team leader.

 Sense of Accomplishment It is important that daily or at least twice a

week, fully integrated sub-modules are tested jointly with the customers to

have a sense of victory, which is also called emotional closer. This will be

motivating factor to stay tuned.

Table 2.2 Agile Terminology

S.No. Traditional Terminology Agile Terminology

1 Requirement User Story

2 Iteration Sprint

3 Software Requirement

Specification

(Requirements)

Product Backlog List (PBL)

4 Prioritized Requirements Sprint Backlog List (SBL)

17

 Customers Delight By early and frequent delivery of sub-modules, the

customer remains excited about his/ her contribution and assured that the

project is on track and their requirements is being met fully. In traditional

process, the aim is to satisfy the customer by delivering a fully tested final

product as per the delivery schedule while in Agile, aim is to seek delight

of the customer.

 Requirement Priorities Initially customer will narrate various user stories

for which the software is to be developed and will also indicate priorities.

Customer is allowed to change the priority of various iterations and

developer remains responsive to that. This helps the customer to rush-to-

the-market as per their urgency.

 Customer Participation One of the important ingredients of the Agile

project environment is that customer is co-located and readily available to

participate actively during the development process. In case of off-shore

project or where customer is far located, he or his representative /

consultant must be invited to visit the software company and see the

software in action. User viewing the development process is very

important to build mutual trust.

 Reflecting Improvement It is like dressing up in front of the mirror,

which reflects state of face and the viewer applies necessary, make up to

look better. Similarly, in the case of Agile environment where team gets

together prepare a list of what is working and what is not working and

discuss the solutions so that it works better. It allows suitable changes in

the next iterations so that when integrated the modules perform as desired

by the customer. In other words, this is a process to reflect and improve

continuously and remain on track on time and of quality.

 Close Communication One of the strength and secret of success of Agile

environment is close communication among team members/ teams and

with the customers. This is achieved by locating them in the same room

so that they continuously discuss and contribute to the project. In case of

project where co-locating of all the teams or customer in the same room

18

may not be possible, use of high speed intranet with web camera, micro

phones and chat session are used to exchange questions and answers to

various issues. In case of overseas project, video conferencing at least

twice a week is very helpful.

2.4 AGILE SOFTWARE DEVELOPMENT LIFE CYCLE

In today’s information age with ever growing uncertainty and fast pace of life

style, business community wants to stay competitive and rush to the market to maintain

winning edge. Obviously, traditional method of project management following Waterfall

model or Spiral model will not match expectations of those who want to move fast. It is

well established that 80% of the software projects fail to satisfy the customer due to time

over-runs, cost over-runs, inflexible design (with little or no scope for any enhancement).

Similarly, software developers [45] get often frustrated in modifying their codes and

conduct repeated tests to quick-fix re-fix errors to maintain software product after

delivery. Such a fiasco often leads to losing existing customers for new projects and loss

of credibility in the market. To play safe, certain software companies adopt very

cumbersome and heavyweight process, which further complicates the issue. Thus,

customers hardly get cost-efficient product on time. The answer lies in being adaptive by

creating Agile environment by following Agile software development cycle [24] in the

software company.

Today there are many Agile development methods which mitigates software

project risks, speed up delivery and ensure flexible design which is responsive to

customer changing requirement. This is achieved by developing software in multiple

repetitions ('iterations') of short time frames ('time boxes') and delivering very frequently

to get customer’s timely feedback. In Agile software development process [17, 64, 71],

one unit of time (iteration) typically lasts from two to four weeks. Each iteration passes

through a full software development cycle including planning, story analysis , design,

writing unit tests , coding and finally a working sub-module is demonstrated to

customer. The developer and customer both remained excited about their

accomplishment and confident to remain on-time and within budget.

19

Agile is a very recent software development methodology [63] (or more correctly,

a group of methodologies) based on the Agile Manifesto (See Figure 2.4). This was

developed to solve some shortcoming in traditional software development methodologies.

Agile methods [2, 3, 22, 50] are based on giving high priority to the customer

participation early in the development cycle. It recommends testing by the customer in

every phase and often as possible. Testing is done at each point when a sprint version

becomes available. The foundation of Agile is based on starting testing from the

beginning of the project and continuing throughout to the end of the project. The Agile

methods, concentrate more on (1) individuals and interactions than processes and tools,

(2) more on working software than comprehensive documentation, (3) value customer

collaboration more than contract negotiation, and (4) focus more on responding to change

than following a plan. The Scrum and Extreme programming [54] are two of the most

popular variations of Agile methods.

Figure 2.4 Agile Manifesto

In this section, emphasis is on collaboration among all stakeholders so as to

improve quality in product during the sprint. Major stakeholders are customers including

a direct user, requirement provider, indirect user, head of users, marketing analysts,

investor and development team including program manager, developers working on other

systems that integrate or interact with the one under development, or maintenance

professionals potentially affected by the development and/or deployment of a software

project, business people and testers [46].

These stakeholders are mainly active players in Agile working model. Customer

role is to provide requirement and feedback on timely basis and team role is to giving

response to the feedback and apply relevant technology and market standards on timely

20

basis. Agile SDLC including these two factors is given in Figure 2.5. Numerals in the

diagram show specific activities performed by manager (M), developers (D), testers (T),

marketing professional (MP) and customer (C). Details related with these numerals are

shown in Table 2.3.

At the time of production of the code or before producing code, testing is applied

by writing failed test cases unlike traditional approach of working. Testing activity begins

as soon as stories are finalized and prioritized and testers try to move business logic into

lower levels in order to test with lower effort in the last stage. In Agile, quality product is

delivered by operational teams and acceptance factor is related with rate at which

customer accepted the delivered product. Effectiveness of the team is connected by these

two factors (See equation 1). Out of these two, quality is valuable as acceptance is totally

dependent on Q. Q is more when less number of backlogs is there and it is less when

backlogs items are more.

Backlogs can be decreased when automation is preferred approach over manual

way of testing.

 E= Q * A

(1)

Figure 2.5 Agile Life Cycle

21

Table 2.3 Actor Activity Chart

S.No. Actor Activity

1 C, MP, T Requirements Gathering

2 M, MP, C Effort estimation [29], cost, risk, capacity &

resource Estimation

3 M, D, T, C User stories Prioritization

4 T Designing of Test Cases

5 D Coding for the user story in the sprint

6 T Feedback

7 D Refactoring for the user story

8 C, M, D, T Review meeting with Demonstration

9 D, T, M, MP Lesson Learning phase or Retrospective

session after the sprint

10 C, MP Release

2.5 AGILE PRACTICES

The existing practices of software project management are process bound for

well-defined requirement, time and cost. These are termed as heavy weight processes/

technologies. On the other hand, for rapid development of customer centric software,

Agile environment or lightweight technology like Extreme Programming (XP) is

recommended (See Figure 2.4). Agile practices are attractive and different so need is to

learn them with full dedication and good behavior. The introduction of the extreme

programming (XP-Beck 1999b) method has been widely acknowledged as the starting

point for the various Agile software development approaches. XP has evolved from the

problems caused by the long development cycles of traditional development models. XP

is concerned with good engineering practices so, it is a valued driven method. Its core

values are simplicity, communication, feedback, respect and courage. The life cycle of

XP consists of five phases: Exploration. Planning, Iterations to release, Productionizing,

Maintenance and death. There are different roles in XP for different tasks and purposes

22

during the process and its practices. These roles are Programmer, Customer, Tester,

Tracker, Coach, Consultant and Big Boss (Manager).

XP is a collection of ideas and practices drawn from already existing

methodologies. XP aims at enabling successful software development despite vague or

constantly changing requirements in small to medium sized teams. Short iterations with

small releases and rapid feedback, customer participation, communication and

coordination, continuous integration and testing, collective ownership of the code, limited

documentation and pair programming are among the main characteristics of XP. XP is

extreme because of planning game, small releases, simple design, refactoring, collective

ownership, continuous integration and pair programming.

2.5.1 Pair Programming

Pair Programming [13] is a practice where two Programmers/Testers share the

same terminal (See Figure 2.6). One of them does coding while other keep watching and

reading the code to find on the spot errors. The important part is that both member

intensely interact and are committed to produce first-time-correct code. The pair keep

changing role frequently to maintain momentum of rapid development. Pair partnership is

changed once a day so that every member of the project team work in two pairs per day.

This way over a period say 4 to 6 weeks every member would have worked with every

other member of the team to learn all aspects of various iterations/stories. Pairing

concept may slightly slow down coding but it significantly reduces errors in the code. In

the final analysis, pairing result improves efficiency, quality of code and hence increases

overall productivity.

Figure 2.6 Pair Programming

23

2.5.2 Test Driven Development (TDD)

 In TDD [18, 20, 35, 47, 82] Test Case and code are developed side by side. Thus

while coding in pair one of the members can run Test case to determine whether code

passes the test case. This ensures independent testing of modules/ sub modules. This

results in decoupling of modules, which is a concept of Object Oriented Design (OOD).

Further, design pattern [9, 38, 53, 56, 68] may be applied to have OOD for the upcoming

user stories.

2.5.3 Collective Ownership

A pair has a right to check, cut and improve the module. Every member work on

GUI, database, middleware and all have equal responsibility and pride in doing the job.

No one is confined to a particular specialty instead everybody knows two or more

specialties.

2.5.4 Continuous Integration

 As a pair, the programmers continuously keep checking their code and

integrating daily. For this purpose, XP team uses non-blooming source control. This

necessitate a discipline when one programmer check in a module checked out by another

programmer and after modification is required to put it back. In fact, XP team builds a

system many times a day.

2.5.5 Planning Game

This relates to the division of responsibility between the customer representative

and software Development Team. During this joint exercise, customer decides the

priority of the feature to be incorporated while developer decides time and cost of its

implementation. The developer indicates the budget at the beginning of each sprint. This

helps the customer to select stories, which can be implemented within the budget.

2.5.6 Refactoring

 It is the practice of making small transformation to improve the code structure

and eliminating degradation, which occurs after bug fixing. After each transformation the

team collaborates to ensure consistency. This process continues.

24

2.6 SCRUM

The term “scrum” originally derives from a strategy in the game of rugby where it

denotes getting an out-of play ball back into the game with teamwork. Scrum is named

for scrum formation in rugby play.

The scrum approach has been developed for managing the systems development

process. It does not define any specific software development techniques for the

implementation phase. Scrum concentrates on how the team members should function in

order to produce the system flexibly in a constantly changing environment. Scrum is a

light weight method to deliver software iteratively in which changes are always welcome.

Scrum is concerned with product owner, project lead and team working together in

intensive and interdependent manner. Scrum process includes three phases: pre-game,

development and post game. There are six identifiable roles in Scrum that have different

tasks and purposes during the process and its practices: Scrum master, Product owner,

Scrum team, Customer, User and Management. The Scrum does not require or provide

any specific software development method/practices to be used. Instead, it requires

certain management practices and tools in the various phases of scrum to avoid the chaos

caused by unpredictability and complexity. Scrum life cycle is shown in Figure 2.7.

Scrum duration may be from 2 to 4 weeks. Scrum practices include Product Backlog list

(PBL), effort estimation [33], Sprint, Sprint planning meeting, Sprint backlog list (SBL),

Daily scrum meeting (DSM), Test, Code sprint review meeting (R1), retrospective (R2)

and release (R3).

2.7 COLOR CODING SCHEME FOR BUG TRACKING

Bugs identified within a sprint are displayed on the project wall by Agile team

members such as tester using the following steps:

 Tester note down bugs on stickie note and attaches it to the story

card.

(After identification of bugs in the sprint, the tester creates a

detailed defect board in collaboration with team members)

 Tester moves card back to in development stage on the story card.

25

 Product owner representative then add schedule details on the

stickie note for the respective defect:

a. Schedules the defect for resolution

b. Defers the defect for a later release

 Developer in coordination with tester fixes bug and resubmits it to

ready for Test on the project wall.

Also, for bug tracking and performance tracking, metrics are involved which act

like a communicating metrics. Second option to this is, colored story cards can be placed

in the common room (See Figure 2.8). Also burn down/ burn up chart and running tested

stories can be used for checking the performance. Burn down chart indicates whether

team will finish on time, early or won’t finish everything they committed to. Running

tested stories shows that how many stories are done.

Figure 2.7 Scrum Life Cycle

2.8 TESTING QUADRANT MATRIX

Testing quadrant matrix is shown in Figure 2.9. In this matrix, testing types are

represented in different quadrants. The testing types present in the first quadrant Q1 are

performed using automated tools. More specifically, unit tests may be performed using

26

Xunit tests or Eclipse or any other automated interface. The testing types in second

quadrant Q2 of this matrix may be performed either through automated tools or manual

style of testing. In Q3, manual testing is performed. Last but not the least, Q4 quadrant

testing may be performed using open source tools. This testing matrix is given in Agile

Testing book of Lisa Crispin. These tests are technology facing tests or business facing

tests so as to satisfy the customer.

Figure 2.8 Color Coding Tracking Scheme

2.9 TRADITIONAL RISK REGISTER

Risk Management in software development is done by maintaining a risk register.

The risk register is created for any kind of risk such as low risk, medium risk or high risk.

This is a post management technique as after facing risk, any team member may store

metadata of any risk. The manual entry of risk involves metadata related to:

 Description of risk: A one- or two-line overview of the risk. It should be precise

one.

 Identification date: Date when the risk was identified.

 Likelihood: Estimated probability of occurrence of the risk.

 Severity: The severity of the risk is assessed based on impact of the undesired

outcome.

27

 Priority (optional): This could be either given an independent value or set as a

product of likelihood and severity. A high-severity risk with a high likelihood

should receive more importance than a high-severity risk with a low likelihood.

 Actor: The person who manages, controls, and takes action in response to the

risk.

 Action: The response defined to manage/control the risk.

 Status: Indicates whether the risk is registered or open or closed or being

monitored.

Figure 2.9 Testing Matrix

2.10 REGRESSION TESTING

Regression testing aims at ensuring of uncovering any new defects in existing

functionality due to changes made to the application. So, any set of test cases that is

selected or prioritized should fulfill criteria comprising business need and customer need.

Regression testing framework [36, 51] helps in understanding test case management.

Regression testing in Agile culture is practiced under two major categories.

Sprint level regression testing (SLRT) - focused on testing new functionalities

that have been incorporated since last production release.

28

End to end regression testing (EERT) - The regression testing that incorporates

all the fundamental functionalities.

Three practical scenarios adopted by different organizations in tackling the

regression testing as part of their release cycle are discussed below:

Normal Agile testing In this scenario, each sprint cycle is followed by a small span of

SLRT (See Figure 2.10). The completed code goes through further regression cycles but

is not released into production. After few successful sprint cycles - typically 3 to 4 - the

application goes through one round of EERT before being released to production. This is

known as normal testing as most of the Agile software companies use this approach for

testing their software products. This approach is adopted by many companies.

Advantages:

 Allow the team to focus on ensuring functional validity for the

sprint without the additional overhead of ensuring EE regression

suite completion, and

 There is flexibility in the degree of automation needed, since

production release is preceded by an EE regression cycle spanning

two weeks.

 Easy approach for transition from traditional to Agile approach.

 Production release happens only once every 10 weeks.

Disadvantages:

 Testing team has to spend more time - especially if a third party

vendor is doing the testing

 The team deciding to park critical defects with an implicit

understanding to take them up on a future date. The future date

never comes due to a packed back-log and the team is left to catch

up during the end to end regression window.

29

Figure 2.10 Normal Agile Testing

Week Plus testing In this approach, the sprint level regression continues beyond week 2

and extends till the middle of week 3 (See Figure 2.11). This approach is adopted by

fewer companies.

Advantages:

 This removes the constraint on the team to stop testing abruptly at the end

of week 2 and start with the next sprint immediately thereafter.

 Productivity and quality improvement is significant.

Figure 2.11 Week Plus Testing

Sprint Plus testing In this approach, organizations do not differentiate between

SLRT and EERT. Instead, there is a common regression cycle that is extended by a

sprint. So, the regression test cases that are employed for sprint 2 execution contains

functionality till the stories that are part of sprint 1. This provides the testing team more

time to keep their regression test cases current and automated. This approach is adopted

by very less companies.

30

Advantages:

 This approach avoids the need for having two separate types of regression

test cycles.

Disadvantages:

 It is very challenging to maintain the sanctity of regression testing.

 The automation maintenance effort increases as one is still struggling

against a two week time window and a relatively less sTable set of

requirements.

Mature Testing for Mature Company In this approach instant automation and

continuous integration are used. This approach is adopted by mature companies.

2.11 COMMUNICATION IN DISTRIBUTED ENVIRONMENT

Communication among different stakeholders is a real challenge [85] in an Agile

environment. Client is one of the stakeholders whose job is to transfer input to the

development team. Client may or may not be available at the development site. In other

scenario, one of the client representatives may directly involve with the team members.

For effective communication among parties, some of the challenges are to be handled

beforehand. Communication may start from the source side and end at sink side. Source

side initiates the communication by framing a message by passing through a channel. On

the other side, sink side receives the message. In between these two sides, all the

challenges for effective communication lie. Some of the challenges are as follows:

1. Language barrier

2. Time zone issue

3. Cultural Barrier

4. Channel issue

 When message are to be exchanged at global level, first three issues come across.

Fourth issue is a technical issue, which is linked with wireless communication for an

effective communication, may be resolved easily. In an Agile work culture, different

stakeholders may be located at different locations (overseas). In that situation, managing

these barriers becomes essential. Understanding and respecting diversity of cultures

becomes a necessity. Team has to deal with client of different time zones. Out of all these

31

challenges, language is the barrier that cannot be managed by the team on their own. In

this section, language issue has been dealt and focused by using Adobe captivate [49]

tool for the purpose of understanding requirements in a better way.

Further to add on, communication may have two types: verbal and non verbal. For

verbal communication, parties may or may not be present at the same place. For example,

Email writing is a verbal communication way, as it involves writing mail with the help of

words, phrases, sentences, punctuations and email etiquettes. In addition, source and sink

parties may or may not be present for the purpose of communication at same time.

Considering the case of telephonic communication, both parties must be present. In this

case, communication takes place with the help of words, phrases, pauses and sentences.

Here, pauses take the position of punctuation of e-mail writing. Also, language plays

major role in verbal communication. If language is different then, both the

communication style would be ineffective.

On the other hand, non-verbal communication [48] is very different from verbal

communication style. This involves body movements of a speaker for more clarity of

subject matter. Different techniques that may be used in non verbal communication such

as oculesics, paralanguage and meta-communication, proxemics and kinesics. These

terms sound complex but, in simple words, these techniques are related to different

expressing styles such as, voice modulation, pitch, tone, volume, eye contact,

pronunciation, physical contact, body language etc. This kind of communication is only

possible when face to face communication or video conference takes place. Non-verbal

communication is better than verbal communication but this type of communication is

not always possible.

Specifically, in Agile work environment, non verbal communication is not

possible as client is overseas and development team is at different location. Occasionally,

client may visit development site or team member may have face to face interaction with

the client. If interaction is not non-verbal, then it does not mean that team members may

have chance to skip important points of requirements. In that scenario, it becomes the

responsibility of every team member to clarify the doubts as onus lies on project manager

of specific project. Every business industry give special attention to client but Agile

follower company focus on more interactions with the client whether verbal or non

32

verbal. Selection of these two styles depends on the location of the client. Also, client

representative must be present so as to review the current work and for providing

feedback. This feedback may be very valuable as this may help in preventing long term

issues. Some of the qualities of a client representative are:

 Keen observer

 Trainer

 Technically strong

 Market Analyser

 Feedback Provider

 Secondary requirements provider

 Managerial Skills

 Risk handler

 Decision maker

 Motivation capability

 Optimistic

 Proactive nature

 Multilingual or Bilingual Personality (Optional)

In this section, verbal communication has been focused to ensure that

requirements are communicated in proper manner from client/client representative side to

the Agile team members. Good communication is desirable in business, as growth of

business stays on the pillar of effective communication. Also, at global level, business

flourishes, because of effective and productive communication among its stakeholders.

2.11.1 Communication

In this section, communication has been managed effectively in an Agile work

culture by incorporating various linguistic components. For getting an understanding on

these components one scenario has been considered. That scenario has been shown in

Figure 2.12.

33

Figure 2.12 Agile Scenario

Figure 2.12, consists of client (C), client representative (CR) and Agile team.

These all are the major stakeholders who have keen interest in the project. C is a resident

of France and he is fluent in his native language “French”. Agile team is part of one of

the renowned multinational company in India, who is famous for delivering software

product deliverable with good quality in less time. In addition, all employees are fluent in

English Language. CR is representing her client in India and he is bilingual personality

with English and French. His main responsibility is translating the requirements provided

by C into English language and clarifying the doubts of different team members. C is

non-technical person, that’s why she provides requirements in informal way.

Specifically, detailed description about all these are shown in Table 2.4. C and CR

job is to provide timely feedback to the team members for enhancing the productivity of

the product deliverable. C sends the feedback to CR in French and CR communicates that

with team members after translating the French feedback in English. In addition, CR is

mostly available at development site. CR translates and communicate corrected version

of the requirements to the team.

34

Table 2.4 Task Chart

Client (C) Client Representative (CR) Agile Team

Idea Communicates with Client & Team Communicates with CR

Informal

requirements

Understands/ Translates Requirements Implements Requirements

Rarely Available Mostly Available Always Available

Monolingual Bi-Lingual Monolingual

Feedback Provider Feedback Provider/ Reviewer Feedback Receiver

In Agile, less is more approach is used, so, in an ideal team, 7 - 8 members are

there for implementing and releasing client requirement. In Figure 2.13, four team

members are shown for the simplicity purpose. These four team members are shown on

the four corners of the rectangle. This is done to give equal importance to each team

member, as there is no hierarchy in Agile. They all can interact with each other and CR,

who is shown in the centre of the rectangle. This rectangle is shown to be incomplete as

4 team members are not fixed. There may be more team members as per the requirement

of the project. These team members roles may be of a developer, tester, business analyst

and language expert such as Java or C plus plus. In SCRUM, one of the methodologies of

Agile, scrum master is another team member who manages rest of the four team

members. These roles of team members are not static. Depending on the work

requirement, roles switch among team members. Open interaction system is followed for

the purpose of transparency and easy access of resources. A resource here refers to team

members. This open environment helps CR in providing instant feedback for early

detection and correction of any current or upcoming issues. A resource may also refer to

tools and materials needed for delivering the outcome. A business growth depends on,

how strong is the interaction among team members and CR.

35

Figure 2.13 Team Communication

Verbal communication, among two major stakeholders C and CR, comprising e-

mail and telephonic options is shown in Figure 2.14. Team is shown in this Figure, as

team has to interact with the CR for receiving the feedback and input requirement. Also,

formal requirements such as user story and ready story are framed by team members, by

collaborating with the CR. This is the most important and first step in the user story

implementation. Ineffective communication from either side may prove to be very

expensive. Also, CR feedback to the team members is very important so as to learn

lessons and implement those lessons at an early stage. This early stage lesson may cut

down cost to an unexpected level. In some of the earlier proved cases, problem detected

at an early stage may cut down cost up to 80%. Also, Pareto principle: 80-20 rule, also

says that 80% of time spent in the earlier stages may bring down maintenance cost to

20%. In Agile, requirements keep on changing with time. If correct understanding of

requirements would not be there in the beginning, then the maintenance cost may go very

36

high. In this Figure, different color shows that who started the process. Following is the

list of color coding scheme:

Red: C

Green: CR

Brown: Team

Figure 2.14 Verbal Communication

Figure 2.15, represents non-verbal communication among major stakeholders by

video conference (VC) or face to face (FTF), which are ways for communicating

requirements. Team may get a chance to clarify their doubts in an effective way. Team is

part of the conversation, and CR is translating the requirements to C and team. In this

case, expression, body movements, gestures of C play a major role in identifying

requirements clearly. This type of communication may occur frequently during the

project span depending on the availability of the C. After getting the correct version of

the requirement through VC or FTF means, team collaborates with CR in framing formal

requirement in the form of user story and ready story. Ready story is the expanded

version of the user story. Ready story is created by conducting more conversation with

CR and confirming the ready story points. These ready story points confirm the

acceptance criteria of a user story. After finalizing the acceptance criteria, team may start

37

implementation of the user story. CR reviews the deliverable prepared by team and

reviewed deliverable is delivered to C. This process continues until all the user stories are

delivered to the C.

Figure 2.15 Non-verbal Communication

2.11.2 User Story

When requirements are finalized, then next step is to frame the requirement in the

form of user story. User story has a typical format. A sample format of user story is

shown in Figure 2.16. Last clause of this format is optional.

Figure 2.16 Story Format

38

For the shown user story, a ready story may have acceptance points. The CR

accepts the user story, when all confirmed points are met. These confirmed points may be

written on the back side of the story card. These acceptance points are shown below in

Figure 2.17. There may be more number of confirming points. For the simplicity sake,

only three are shown here. These may be added as per the CR need. By getting answers

of these confirming point’s team may start working on the user story. Clarity of

confirming points among team members is a must.

Figure 2.17 Confirming Points

2.11.3 Modified User Story

Verbal communication especially, email writing faces different challenges while

understanding requirements from C. Adobe Captivate is the tool that is used for

understanding the requirements in a better way, stated by C. This understanding is done

by using punctuations, with the requirements. The process is used by CR and Team

members. Using adobe captivate tool, text may be converted to audio. By using

punctuations, pauses may be inserted in the audio. Comma is more frequently used

punctuation. Capital letters are used for reading abbreviations. In this way, email writing

text can be converted to audio. This audio, when played, will appear as if, C himself is

telling her requirements. C may not be expert in captivate tool. If she is, in that case, she

can send the audio of her requirements in French language; otherwise, CR will convert

requirements into audio files using English Language. Also, CR may collaborate with

team in framing user story and ready story using captivate tool. Block diagram showing

use of captivate by different stakeholders is shown below in Figure 2.18.

39

Figure 2.18 Stakeholders Understanding

Considering the case when client give requirement in informal way in the form of

Email (see Figure 2.19 for attachment). For the sake of simplicity, requirement is shown

here in English (C gives requirement in French to CR). Different work professionals may

draw different meanings from this email.

Hi

Database to be created researchers of software domain can access patents of countries

us ep india searching is possible by application number patent number keywords class

sort possible string formation include other features load management

Note please find attachment

Thanks

John

40

Figure 2.19 Researcher Database

Can anybody work on this kind of requirement?

Can quality would be there in the deliverable?

Can delivery of product is possible on time?

Can client would be satisfied?

Answer to all these questions is NO!

For more clarity, C or CR may further work out on the email text by adding more

& more punctuations. In addition, email text may be rewritten in Slides notes section of

Adobe Captivate 8 tool in and is converted to audio file that may be played by team

members for better understanding. These punctuations would introduce more pauses in

the audio file. Also, C or CR may add suitable graphics in the audio file for better clarity.

A corresponding screen shot for the requirement is shown in Figure 2.20. Slides notes for

the above mentioned email are:

Hi!

"Database" to be created.

Researchers of "software domain" can access patents of countries: US, EP, India.

Searching is possible by application number, patent number, keywords, class.

Sort possible. "String" formation.

Thanks,

John

41

Figure 2.20 Project Requirement

Similarly, slides notes or script is to be written for user story or ready story. Once

scripts with graphics (.cptx files) are converted to audio files, these converted audio files

are published and uploaded on the central database at the workplace. In this way, less

documentation principle of Agile is fulfilled. These uploaded files (having extensions

.swf, .avi) may also be accessed by team members who are working at distributed

locations.

For the given project requirement, user stories are shown in Table 2.5. CR job is

to communicate with C, to get clarity on the following issues after getting informal

requirement:

 Who all would be the user of the database?

 What is their job profile?

 How frequently they would access the database?

 Sorting on what factors?

 Whether authentication is needed?

 What kind of String formation is needed in a database?

42

After getting answers of all these questions from C, CR can start interacting with

team. CR job is to explain informal requirement by adding answers received from C.

Table 2.5 User Stories

S.No. User Story

1. As a searcher, I want to search patents of US, EP and India, on the basis of,

bibliographic details, such as, application number, publication number, priority

date, inventor, assignee, date of patent, so as, to perform searches comprising

invalidity search, claim mapping, claim charting.

2. As a lawyer, I want to search legal status of patents, by mentioning publication

number, application number, so as to handle infringement suit of different

assignee of US, EP or India.

3. As an Inventor, I want to search, patents of software domain, comprising, Agile

software development, software engineering, software quality, software testing

etc. so as, to perform “state of the art” search, for countries: US, EP and, India.

4. As a researcher, I want to search, patents of US, as, US is the software hub of

software patents, so as, to improve upon, my findings.

5. As a drafter of a patent, I want to search, related patents, using software

keywords, so as, to learn drafting skills, of software domain.

6. As a business analyst, I want to search, patents of Countries: US, EP or India, so

as, to analyze market trend of patents, in software domain, for different assignees.

7. As a statistical professional, I want to, search revenue spend on patents, by

assignee of countries: US, EP and India.

8. As an examiner, I want to search, Data Base, for finding prior arts of a given

patent by mentioning, its bibliographic details, including application number and,

priority date.

9. As an analyzer, I want to, categorize patent of different classes, such as, United

States classification (USC), Cooperative patent classification (CPC), International

patent classification (IPC).

10. As a petitioner, I want to, download patent document, depending upon its legal

status: active, pending, inactive, abandoned and revoked, so as, to read patent

sections, such as drawings, detailed description, summary, objects of the

invention, background, abstract, claims.

Table 2.5, includes the user stories, as per the requirement of every type of user.

Also, these user stories are written by incorporating as much punctuation as possible, so

as to have clear understanding of the requirements.

One of the samples of script for single user story is shown below in Figure 2.21.

The script of the corresponding user story is separated by different punctuations. Each

slide note of the script may be selected separately or text to speech checkbox is selected

for selecting all slide notes at once. Also, speech management dialog box gives the option

43

of selecting particular speech agent. After clicking on generate audio button respective

text may be converted to audio of selected speech agent. CR may choose English

speaking speech agent such as Paul or Kate. On the other side, C may choose French

speaking speech agent. For better understanding of CR or C requirement, more pauses in

the audio file may be desired. This may be done by using voice text markup language

(VTML) tags. These tags are useful when one of the listeners is fast and other one is

slow. For example, Japanese speaks fast.

Figure 2.21 Story Script

2.12 LINGUISTIC PARAMETERS

The process of story building starts as soon as prioritization step is over. Till now,

we have covered understanding C requirements, user story framing and user story

prioritization. Next step is to create ready stories for the respective user stories. For user

stories 1-10, ready story is written, in collaboration with the CR. Story number 10 is the

most risky story, so, this story is considered as seed story. Confirming points for seed

story are shown in Figure 2.22.

44

Figure 2.22 Confirming points_10

After getting answers of these confirming points, client acceptance strategy is set.

This strategy helps in preparing definition of done (DOD) for all stakeholders. Suppose

CR gives answers of confirming points as:

 pdf

 No

 Usefulness based on legal status

o Active - very useful

o Pending - Sometimes

o Inactive - Never

o abandoned - Never

o revoked – On what ground

This means that, if a petitioner login to the system, then inactive and abandoned

patent details can be disabled. Also, for revoked patents, case history may be enabled.

Active and pending patents are always enabled. For pending patents, only published

patents have to be uploaded and for active legal status, complete document should be

available in .pdf format.

45

CHAPTER III

AGILE TESTING LIFE CYCLE

3.1 INTRODUCTION

Requirements are evolved throughout the project in ASD environment from the

customers. Customer may bring any change in the requirements as per the market

standard. After getting the requirements, team members including tester, market

evaluator and many more do the feasibility study which is an analysis activity so as to

have more specific and clear version of the requirements by communicating with

customer. After including that change in the sprint backlog list (SBL), team along with

product owner may start focusing on that particular change. For achieving long term goal

of customer satisfaction, good quality software has to be released after every sprint by the

development team. As the new requirements (user story in an Agile context) keep on

increasing, different kinds of problems like management of people, task, defects,

deadlines etc. are faced by team members. Accommodating that particular change in the

existing software system also requires different kinds of management such as people

management, story management, test case management, communication management,

sprint management, backlog management etc. In this work, focus is on test case

management which is done using regression testing. In the existing literature, an effective

regression testing management mechanism is missing. Therefore, an Agile testing life

cycle has been proposed in this work which elaborates various activities which are

performed by tester along with other stakeholders to deliver quality product to the

customer.

The proposed testing life cycle is based on “more is less” principle which is

related with communication management among stakeholders. This principle has been

explained for getting quality software product as shown in Figure 3.1. The foremost

component of this principle is ‘more interactions’ among all stakeholders. If

communication of tester with other stakeholders is very frequent and effective then there

would be very less number of doubts or more clarifications. On the basis of more clarity,

team focus increases on relevant portion of the user stories. If relevant portion of user

stories are covered with high focus then there would be less number of severe defects

46

during the time span of sprint. This principle ensures that testing activities along with

effective communication and collaboration among major stakeholders like

Figure 3.1 More is less

business analyst, market evaluator, customer, developer etc. may result in software

product having less defects.

3.2 AGILE TESTING LIFE CYCLE

The proposed Agile testing life cycle has been divided in two parts as shown in

Figure 3.2. This is done to show the clear cut difference between traditional testing and

Agile testing [16, 30, 65]. Moreover the clubbed representation is to show how testing

activities (specifically, regression testing for test case management) are performed by

Agile tester along with other activities by collaborating with other stakeholders. In the

first part of this model, traditional model testing has been shown where tester is involved

in all types of testing such as unit testing, functional testing, integration testing, system

testing and many more. In traditional style of testing, tester does the testing in isolation

with any team member. The development team after completing the coding part in coding

phase hand over the code to testing team and testers start testing on that huge code.

In the second part, an Agile tester interacts and collaborates with two circles

namely an outer circle and an inner circle. The outer circle is connected to the outside

world. In the outer circle, the tester collaborates with customer and market evaluator. The

customer job is to provide an informal set of requirements in one specific domain and

market evaluator job is to study the

47

Figure 3.2 Agile Testing Life cycle

48

Table 1 Agile Testing Abbreviations

Abbreviation Full Form

UT Unit Testing

FT Functional Testing

IT Integration Testing

ST System Testing

T Technology

C Competitor

MS Market Standard

AT Automated Tool

P Pattern

AT Acceptance Testing

ET Exploratory Testing

TDD Test Driven Development

market trends of the same domain. Further, from the outer circle, a tester may extract

latest technology trend, competitor’s software product features and the latest market

standard. All these factors are analyzed by market evaluator and an updated set of data is

provided during user story finalization meeting in the presence PO. PO role is to satisfy

the customer in terms of available bandwidth and expertise of team while converting the

informal requirements into formal set of requirements. This formal set of requirements is

known as a user story.

After finalizing the user story, tester role is to convert that user story into ready

story. This ready story acts like a check list at the time of verification or acceptance of the

49

user story by the customer. This ready story is the outcome after performing two types of

testing. Types of testing which are done for specific user story are:

 Exploratory Testing

 Acceptance Testing

Exploratory testing is the testing in which different possibilities or scenarios are

considered as per the market analysis performed by market evaluators having positive

and negative limitation. At the same time, risk of user story may be found so that effort

estimation may be accurate in terms of effort, complexity and time.

Acceptance testing performed by tester sets the acceptance criteria for a user

story. These criteria are also known as verification points. These points are needed to set

the complexity level of the user story. Specifically, based on some factors or some expert

techniques like planning poker game, complexity level of the user stories is identified.

These verification points are then deeply analyzed. In this case also, tester does not work

in isolation rather product owner collaborates while finalizing the acceptance criteria of a

user story.

The proposed Agile testing life cycle revolves around regression testing as shown

in Figure 3.3. In directly, test case management is accomplished by managing test suite of

user stories. In the next section, regression testing of the inner circle is elaborated.

Figure 3.3 Regression Testing in Matrix

50

3.2.1 Agile Inner Testing

In the inner circle, tester collaborates with team members and product owner.

Tester’s job is to manage test cases along with delivering quality product to the customer.

In Agile, regression testing is important as Agile is based on responding to change over

following a fixed plan. Therefore, regression testing is an ongoing activity in Agile. After

looking at the verification points of the user story, tester starts with writing failed test

cases. For any user story of the sprint, test cases are designed by testers using test driven

development (TDD) approach which means failed test cases are written for the upcoming

user story. Using this, developers try to convert these failed test cases into pass test cases.

This approach of testing comes under white box testing. This TDD approach may be

implemented in pair programming style in which on single terminal first failed test cases

are written and then code is written by developer. This practice helps in getting the

immediate feedback so as to embed quality in the final deliverable.

Further, unit tests for any user story are written by extracting the support from the

automated tools like Eclipse for Java application, Xunit for web based applications. This

helps in reducing overall time for any sprint. Also, pattern may be utilized so as to handle

existing problem with best evolved solution. By following pair programming practice,

functionality of the user story is checked that means black box testing is performed as per

the verification points of the ready story. During the sprint, integration testing is also

performed among user stories of a sprint by considering dependencies among the user

stories. Moreover, integration testing is also performed among user stories of the different

sprints. Further, to manage test cases, effective regression techniques such as regression

test selection (RTS), test case prioritization (TCP) etc. are implemented so as to run only

subset of the test cases out of all the test cases. In the subsequent chapters, the proposed

techniques for RTS and TCP have been discussed.

Finally, depending upon the feedback cycle of customer, product is released by

the operational teams in collaboration with tester by performing all needed testing

including usability, scalability etc. Feedback of customer is really a great input for getting

great quality product. As per the Pareto Principle, 80% of value is reflected in the

software product by 20% of inputs at right time. In this life cycle, customer of outer circle

51

is interacting with every team member comprising tester. Furthermore, definition of done

is declared by customer after matching the verification points of ready story with the

actual product. This is an easy way to check the validity of user stories in a sprint.

3.2.2 Online Bugs Tracker

Ready story and user story are represented on the online story board which in

general is created in Microsoft Excel. This online story board format may vary from one

organization to another. To differentiate among status of user stories along with testing

information in a sprint, colored notes may be placed on hard board tracker. For example,

red color is used to reflect high risk user story, blue color is used to reflect low risk user

story etc. or red color is used to reflect complex user story, blue color is used to reflect

simple user story or red color is used to reflect a user story with many severe bugs and

having high priority, blue color is used to reflect a user story with few number of bugs

having low priority etc. These colored sticky notes may be utilized to differentiate among

the user stories of a sprint. Further, an alternate coding scheme has been proposed to

reflect the bug status for a particular user story in a sprint.

This alternate coding scheme is based on various mathematical sequences such as

Fibonacci series, arithmetic sequence, geometric sequence etc. One of the examples for

tracking bugs in a sprint using Microsoft Excel is shown in Table 3.1 which is based on

Fibonacci series. Each number of the series is a unique representation of the bug status in

the user story on particular day in the sprint. Specifically, zero code represents that user

story is as per the customer requirements. Similarly, 3 number in the Table indicates that

user story 1, on day 2, has

Table 3.2 Online Bug Tracker

52

3 low risk defects. Also, for resolving specified bug, a solution may be provided by the

tester in the specified cell of online bug tracker by inserting comment, if team members

in a pair are changing at different locations having different time zones.

This approach is beneficial when team members are located in different locations.

Further, if time zone is different in different locations, then by looking at the comment,

team member may start working without any communication. Moreover, this code which

is assigned to user story on any particular day is useful in tracking performance of team

members and for determining pending work in any sprint.

3.2.3 Sprint Flow Diagram

 Scrum methodology of Agile is based upon small duration sprints having small

number of user stories listed in Sprint backlog list (SBL). SBL is subset of PBL. After

doing effort and complexity estimation by PO, SBL is finalized. This methodology is

divided into three phases. The Scrum phases are pre-execution phase, execution phase

and post-execution phase as discussed in Chapter 2. However, these Scrum phases do not

elaborate or identify testing activities. In this work, all the testing activities occurring

before, within and after the sprint have been identified. For the purpose of simplicity,

only three sprints namely, S1, S2 and S3 are taken in the sprint flow diagram having three

phases (See Figures 3.4 to 3.6), having duration of execution W1, W2 and W3

respectively where w stands for week. In the execution phase, a sprint S1 may be

completed having n number of user stories from (SBL1) as discussed in chapter 2.

Similarly, S2 may be completed having m number of user stories from SBL2.

 Figure 3.4 shows testing scenarios in pre-execution phase of Scrum methodology.

This phase starts with collaboration among customer, market evaluator, product owner

and tester. They sit together to finalize the user story and ready story. The ready story is

based upon the confirming points which are as per the market standard, technology and

competitor’s product features. These confirming points are also known as acceptance

criteria. During the sprint, these acceptance criteria’s are frequently checked. Also, tester

performs exploratory testing so as to check the feasibility of various scenarios. After

finalizing the ready story and user story, a list is prepared having all the finalized set of

53

user stories. The list is known as Product backlog list (PBL) which is input for the second

phase that is execution phase.

Figure 3.4 Testing Scenario in Pre-execution Phase

After receiving the input from the previous phase, execution phase starts which is shown

in Figure 3.5. PBL is analyzed by PO and effort estimation is done for selecting the user

stories for SBL1 and SBL 2. SBL1 and SBL2 are executed in sprint S1 and S2

respectively. In S1, tester performs unit testing with TDD or white box testing, functional

testing or black-box testing, regression testing, integration testing among dependent user

stories and many more depending on the requirements set by customer. The output of S1

is integrated tested set of user stories IT1 with regression test suite during W1 duration.

Similarly, in sprint S2, same types of testing are performed and integrated set of user

54

stories IT2 with regression test suite during W2 duration. Further, these integrated set of

user stories IT1 and IT2 are considered as user stories in SBL3. Also, there may be other

user stories which need to be developed in W3 duration which are newly added feature in

the maintenance time of the product. SBL3 is input for the post-execution phase which is

shown in Figure 3.6.

Figure 3.5 Testing Scenario in Execution Phase

 In post execution phase, user stories are selected from the SBL3 based on the

priority set by the customer or complexity level or risk level or any other prioritization

factor. In this phase, different types of testing are performed based on the customer need.

Various types of testing that are mandatory in S3 are integration of IT1 and IT2,

functional testing, system testing and regression testing depending on the modification

suggested by the customer, if any. Other optional testing that may be performed in W3

duration are compatibility testing, security testing, performance testing, usability testing

etc. Finally, software product is delivered to the customer.

55

Figure 3.6 Testing Scenario in Post-execution Phase

3.2.4 Benefits Of Agile Testing Life Cycle

 The proposed Agile testing life cycle defining role of tester before start of a

sprint, within a sprint and post sprint is useful for pilot organizations who are about to do

transition from traditional model such as waterfall, spiral models etc. to Agile model. An

Agile tester collaborates and communicates with other stakeholders mainly customer and

team for delivering customer product to the customer. Along with the team, customer is

also present to provide feedback for the work done in the sprint. Some of the benefits of

the proposed testing life cycle are listed below:

 The regression testing which has to be started from very beginning of the sprint

helps in managing test cases in an efficient manner.

 The outer circle and inner circle concept used in formulating detailed testing

activities is also helpful in getting big picture of the market scenario in line with

the customer requirements.

 The acceptance criteria set by tester in collaboration with market evaluator helps

team and customer in verifying the user story which is the output of the overall

effort put by an organization.

 The regression testing techniques like regression test selection and test case

prioritization helps in reducing time when frequent changes are introduced by

customer.

56

3.3 CONCLUSION

In this chapter, interaction of a tester with other stakeholders along with testing

activities has been explained in the proposed Agile testing life cycle, which revolves

around regression testing. Moreover, quadrant has been defined for regression testing

which covers all quadrants. Further, for Scrum methodology, a sprint flow diagram has

been discussed by mentioning all testing activities before the sprint, within the sprint and

post sprint. In the next chapter, a framework has been proposed for performing effective

testing in distributed environment.

57

CHAPTER IV

AGILE TESTING IN DISTRIBUTED ENVIRONMENT

4.1 INTRODUCTION

Software market is booming at a tremendous pace, but long term goals of

customer satisfaction, risk management etc. are still a problem. One of the reasons behind

all this is quality factor. Maintaining and attaining the quality of software projects is

tedious task but important also. Many of the IT projects are outsourced in the global

market for the purpose of getting the cheap rate professionals or sometimes to get the

expertise in the specific field. Cooperation, coordination, communication and

collaboration are basic pillars for successful Agile software project. This outsourcing in

distributed environment is troublesome as face to face communication cannot take place

which is the backbone of an Agile culture. Further, this task is even more complex as pair

programming like best practices are difficult to follow in the distributed environment.

Further, ASD is based upon the rapid feedback cycle during the sprint. This cycle

comprises of feedback from two parties. Firstly, it is given by the team members and

secondly by customer. Improvements are incorporated in the next sprint by keeping in

mind these feedbacks. Also, quality strategies are improving a lot by considering

different scenarios and experiences of the Agile experts. It means quality strategies are

also dynamic but too much flexibility sometimes becomes a hurdle in the path of

distributed environment. Quality can not be achieved until and unless software is tested in

any environment for the purpose of detecting and resolving bugs. Now, the problem is

more severe when teams are working at remote locations in diversified culture. In this

culture, timezone may be different, language may be diffenent, working style may be

different and many more differences which may create problem while following pair

programming/testing practice as an effective communication is not possible. Therefore, a

framework has been proposed for the purpose of attaining, maintaining and improving

quality in the distributed Agile context by considering the various research challenges.

58

4.2 AGILE TESTING IN DISTRIBUTED ENVIRONMENT

Agile testing does not emphasize on traditional testing procedures and manual test

case format, rather it is built upon the strategy that testers need to adapt to rapid

deployment cycles of testing. Agile testing involves testing from the customer

perspective as early as possible and as often as possible, since working increments of the

software are released frequently in ASD. This is commonly done by using automated

testing tools to minimize the amount of manual effort involved and pair testing in which

single terminal is shared by two members for the purpose of providing and implementing

that feedback for good quality.

For globally distributed web applications, DAD (Agile Framework for Globally

Distributed Development Environment) model is published in 8th WSEAS International

Conference on Applied Informatics And Communications (AIC’08)

Rhodes, Greece, August 20-22, 2008. This model concentrates on full time

communication between customer and team. Also, this model talks about phases that can

be used for the distributed product delivery. However, this model does not teaches the

scenario when team members are separated at different locations.

In the distributed pair programming (DPP) tracking system, two persons work

together for common goal when their locations are different. In DPP, sharing of terminal

from different locations has been discussed by mentioning its challenges. Further, a

conversation model with commitments is presented based on language/action perspective

as a framework for understanding communication within DPP processes. This pairing

model is effective to use when navigator and driver both follows the holistic approach of

tracking and updating the progress information in explicit manner. More specifically,

DPP tracking system focuses on pair programming/testing member’s performance

tracking at different locations. However, this DPP model does not discuss the mechanism

for forming a pair among team members of different locations for pair

programming/testing practice. Also, simplification of code (refactoring) is required for

getting better understanding of it when time zone differ and no communication can take

place. For implementing these practices in diversified culture from scratch is a big

challenge that’s why some way is needed which may work out for solving present issues.

59

That’s why, this chapter discusses refactoring and pair programming practices from

testing viewpoint.

 In next section, a framework for distributed environment has been proposed

which follows pair programming and refactoring practices. Further, a novel method has

been discussed for forming pairs for distributed environment.

4.3 PROPOSED FRAMEWORK FOR DISTRIBUTED ENVIRONMENT

The framework varies from collocated environment to distributed environment.

Here, distributed environment is elaborated by considering pair working where one is the

driver and other is the follower. Also, both are sitting at different locations. But they are

collaborating, coordinating, supporting and communicating despite of the culture and

time zone differences. In Figure 4.1, a framework for the distributed environment has

been proposed. In this proposed framework, main components are:

 Teams members at Location 1 The hardware needed for the pair

working is a first complete system of video conferencing and Live

meeting at location m.

 Team members at Location 2 The hardware needed for the pair working

is a second complete system of video conferencing and Live meeting at

location n.

 Central Repository It is a database [58] (DB) of information related to

the user stories, team, market, customer, competitor, timelines etc. in the

proposed framework. This DB may be accessed by team members of both

the locations at any time. Team information in this repository may include

attributes of different team members. Also, some additional details may be

entered in the repository which may be useful for taking some important

decisions in future. The practices like pair programming and refactoring

are already present in some of the methodologies of Agile but using these

practices in distributed environment is cumbersome, so, for the purpose of

implementing these best practices require significant amount of effort

before using practices. That’s why to decrease that effort the pair

programming has been elaborated by proposed buddy identifier technique

60

and refactoring has been elaborated by simplifying code using object

oriented principles. The central repository comprises components like

online story board, web based query tracking tool, code base and test

suites, open source software and manual and many more. For the purpose

of understanding of this repository, the listed components are explained

as:

a) Online Story Board It is the consistent way of maintaining and

managing story cards.

b) Web based query Tracking Tool It is the quick and secure way of

tracking, submitting and storing any query.

c) Codebase and Test suite Code of any module can be accessed by

any team member of any location for the purpose of change request in

the sprint. For keeping check on updates in code, versioning

mechanism is needed, so that, latest copy is stored in the central

repository. With it, all check out and check in are tracked so that

updated copy can have the proper version number or release number.

d) Open Source Software and Manual Without automation, it is tough

to proceed in distributed culture. Access to the entire open source

software‟s should be there to every stakeholder. Along with it, online

user manual copy should be available so that anybody can read it from

any location.

e) Team members attribute In the central repository, the next

component is database of team member’s attributes. These attributes

may be accessed by any team member of any location. A pair may be

identified by product owner or by following “self organizing

principle” among team members so as to work in collaboration for the

purpose of delivering product to customer.

In this framework, team members at location 1 and 2 are shown who are also pair

members for pair testing/programming practice. They are also using refactoring practice

for doing simplifying code. Each team member has her own video conferencing setup for

the purpose of communication. These two members have access to central repository

61

which is stored on the server. They are able to access components (a)-(e) which are

mentioned in the Figure 4.1. For the purpose of maintaining consistency among code or

test suite which is one of the components of central repository, versioning system may be

adopted by each team member. In this framework of distributed environment, focus is on

identification of buddy identifier for a pair. A rigorous analysis may be performed for this

work before starting any sprint. Further, refactoring by this pair may be executed by

following some standard object oriented principles.

In the next section, buddy identifier techniques have been proposed which are

based on attributes of team members which are present in the central repository of the

discussed framework.

Figure 4.1 Framework for Distributed Environment

62

4.4 PAIR PROGRAMMING IN DISTRIBUTED ENVIRONMENT

The execution of a sprint in the distributed environment is troublesome for the

team members of the pair. The foremost issue is how to make pair among separated team.

In the existing literature, there are few methods for making pairs in a team such as an

experienced with novice, novice with novice and experienced with experienced. These

methods of pairing has problem of compatibility among team members. For said issue, a

buddy identifier technique, which is based on self centric approach, has been proposed

that analyzes the common attributes of the team members which are maintained in a log

of the central repository. Then, PO makes strong pairs among team members based on the

data collected in the log of the central repository.

4.4.1 Proposed Buddy Identifier

In this subsection, a novel approach has been discussed to overcome this

compatibility issue. This new approach is based on a self centric network. This may also

be known as personal network or ego network. It is a type of network which is based on

the personal preferences of a buddy. Personal preferences may be in the form of personal

interests, personal hobbies, personal values [60, 61] etc. A graph G = (V, E) is an

undirected graph in which links between vertices are present when there is some personal

interest between two nodes. The personal network in the form of a graph G having

vertices V=3 and edges E=3 is shown in Figure 4.2. In this Figure, starting node which is

A, is known as a seed/source node. If A is connected with two more nodes B and C then

B and C are known as sink nodes. In other words, A has two interest’s e1 and e2, further

B and C has e3 interest.

Figure 4.2 Ego centric graph

63

More specifically, source node A and sink node B which are connected by an

edge e is shown in Figure 4.3. There may be n number of nodes that may be connected to

seed node. This is the general philosophy that a connection is established for the purpose

of specific reason. After some time, strength of that connection may be measured and a

change can be accommodated for growth and stability, depending upon the need of the

system in which personal network is to be implemented.

Figure 4.3 Common Habit Representation

The identification of a buddy in a pair is done by analyzing the behavioral

features of the team member. This is the human tendency that similar minded people are

good friends. For example, common aspects of friendship are nature, interest or taste,

regional background, habits, skill sets etc. Similar minded people try to spend more time

with people who know moral values, who love rugby, who belong to same area, who love

to collect retro style pictures, who are expert in Java etc. For identifying buddy for the

pair programming, these commonalities can be suitably taken care of. Before starting any

new sprint with a team, PO can distribute one questionnaire for all the team members.

This distribution of questionnaire may be through various means like email, meeting,

group chat, etc. After analyzing the questionnaire of all the team members, the PO may

apply clustering techniques to form cluster of similar minded people. As per Agile,

responding to change is a good practice over following a plan. Therefore, rotations may

be planned as human behavior changes with time.

64

Figure 4.4 Common cluster

 The Figure 4.4 discloses that PO has 3 clusters. Each cluster is special in its own

commonality. For example, 1
st
 cluster is representing members from South India. 2

nd

cluster is depicting members who love to play rugby. Last cluster is cluster of Kathak

dancers. These clusters help in buddy pairing in a better way.

The South region cluster has been shown separately in Figure 4.5. In this cluster,

4 team members namely 1, 2, 3 and 4 are shown who belong to south cluster having good

compatibility among themselves as compared with the rest of the members. If one cluster

has more than two members, in that case rotation may be permitted within the cluster. So,

in this south cluster, pairing is possible within the cluster. For example, team member 4

may be paired with 1 or 2 or 3 team member, if 4 is the seed node. If (4, 1) pair is not

producing high productivity then rotation may be done within the cluster by doing pairing

among (4, 2) or (4, 3).

65

Figure 4.5 South Cluster

In other scenario, one member may be part of more than one cluster, in that case,

rotation may be permitted across the clusters. These clusters may be called as an

overlapping cluster (See Figure 4.6). For example, one member may be interested in two

clusters such as music cluster and drama cluster. Then, that member can have buddy from

either of these clusters. In that case, decision of pairing a buddy may be taken by any

team member or PO depending upon the process followed in an organization. Largely,

the organizations follow Self Organizing principle [], so, team members may decide

among themselves for the pairs. In Figures 4.4 and 4.6, decision of pairing is taken

by the PO. Further, rotation may be permitted depending upon the feedback from both

sides. For example, during 1
st
 cycle of buddy programming, A (Driver or Leader) is

buddy of B (Learner) (See Figure 4.7). During review session, PO notices that

productivity is less than threshold mark in an average scenario, then PO may suggest

rotation of A with her overlapping buddy so that in next sprint or cycle, productivity level

may be enhanced among team members. (See Figure 4.8)

Figure 4.6 Overlapping cluster

66

Figure 4.7 A pair

Figure 4.8 Buddy Rotation

 The proposed buddy identifier technique discussed in this section is useful when

team members are present in different locations having diversified culture. The team

member information stored in the central repository may be utilized for making a good

pair having compatible team members. By using buddy identification technique,

67

compatibility among team members is increased when their location is different. A

compatible pair working results in fruitful outcome in less time as compared with any

pair. Accordingly, there would be less defects in the sprint and time to delivery of

software product would be less.

4.5 REFACTORING IN DISTRIBUTED ENVIRONMENT

Design is the crucial step while working on any user story during the sprint in an

Agile culture of software development. A good design can generate good code and

moving further in the journey, a good code would have less or minimum bugs by utilizing

benefits of various principles of Agile like simplicity, pair programming, less is more

approach etc. to its fullest.

In this section, a step wise source code design approach has been proposed for the

purpose of obtaining improved code from rotten code (having bad design) using

regression testing and refactoring/rewriting methodology. Definition of improved code is

proposed on the basis of various design principles like Open Close Principle,

Dependency Inversion Principle, Interface Segregation Principle, Single Responsibility

Principle and Liskov’s Substitution Principle. This improved design of code executes the

same behavior irrespective of the change in the design feature of the original code. The

presence of critical errors in the previous steps slows the performance of refactoring

process. That’s why, a regression test need to be performed at every step of the sprint and

product need to be tested for better performance.

The syntactic and semantic checks may be performed so as to ensure consistent

behavior of the user story after refactoring. With this approach scalability/extensibility

chances are higher in distributed environment as team members follow simple design

with refactoring practice and continuous regression testing.

The process flow diagram (See Figure 4.8) for the step wise conversion of the object

oriented source code into improved code (rewriting or refactoring) is comprised of

various components having source code for the user story, test suite of unit tests (UT) and

acceptance tests (AT) for the user story created by the tester, regression test suite from

previous sprints and finally accepTable and rewritten/refactored code based on the object

oriented principles.

68

In one of the scenarios, source code may be rewritten when change request is

requested by the customer for the existing user stories, when code review is performed by

the pair programming members and when new defect or problem of high severity is

detected. Refactoring is applied on the original source code by applying object oriented

principles so that there can be escape from the bad design for future sprints. After doing

refactoring of the source code, same test suite having unit tests and acceptance tests are

applied to the new code after applying syntactic and semantic check. Also, behavior

remains consistent by restructuring the statements of the original source code. This

correctness check is precondition before the release of the sprint’s output to the customer.

As Agile is iterative and incremental, that’s why regression testing is also incremental.

Regression testing in this section is limited to unit tests and acceptance tests but it is

not only limited to these two tests rather it can include all types of testing which are

covered under sprint flow diagram discussed in chapter 3. It is an ongoing process in

Agile. The bulky size of test suite makes the testing task cumbersome. So, to release the

deliverable on time, regression testing techniques may be applied which are discussed in

subsequent chapters of this thesis. This technique will save time, resources and quality

check on refactored code would be performed by retaining the original behavior of the

source code. Regression testing may be performed manually but to speed up the process

it can be done by using different automated open source tools. Similarly, refactoring may

be implemented using tools such as xrefactory.

4.6 REFACTORING EXAMPLE

Simple design approach using object oriented principles has substantial effect in

programming models. Specifically, simple design is useful in distributed Agile

environment while following pair programming practice in which locations of pair mates

is different. In that scenario, team member of a pair is able to understand the code written

by other pair member. In the suitable time zone, strategies are discussed and implemented

using simple design practice. One of the bad example is discussed below for reference

(Interface Segregation Principle).

69

Figure 4.9 “Refactoring using Object Oriented Principles in Distributed Environment”

Table 4.1 Testing Abbreviations

Abbreviation Full Form

UT A set of Unit Tests

AT A set of Acceptance Tests

TCP Test Case Prioritization technique

RTS Regression Test selection technique

70

class Example

{

public:

virtual void e1() = 0; //pure virtual function

virtual void e2() = 0; //pure virtual function

};

class A : public Example

{

public:

void e1() //Class A e1 method

{ ... }

void e2() //Class A e2 method

{ ... }

};

class B : public Example

{

 public:

void e1() //Class B e1 method

{ ... }

void e2() //Class B e2 method

{ ... }

};

class My

{

 Example *e;

 public void setvalue(Example *w)

{

e=w;

}

public void try()

{

71

e->e1();

}

};

This is an example of rotten code (bad design) as object e of class my is referring

to only first method e1. Nowhere object e is calling e2 method. So, unnecessary both the

methods are present in single place. There is a need to simplify this design by using

separate interface for e1 method and e2 method.

4.7 BENEFITS

Communication and coordination would scale up as central repository is there to

provide the needed tools and support. Also, by using Twist automation tool with this

framework can incorporate growth while working in different locations as this testing

tool works in natural language of the specified culture. This paid tool supports data

driven testing and handles complex changes fast. Other supporting solutions in

distributed environment are:

 Using VSS (Microsoft visual source safe tool) or any other versioning

management tool for managing and accessing the latest version.

 By sharing the design pattern for similar kinds of problems in different

locations (onshore and offshore). Notification/Alert tools can be beneficial

when something fishy is expected because of non overlapping hours.

 Client interaction model for multi way feedback to multiple locations is

suggested for enhancing the quality.

 Selection of right open source tool for right kind of job and sharing among

all is important.

 This ensures that bad design is converted into consistent code having

simple design that is the fundamental requirement in XP methodology of

ASD.

 This model ensures that precondition of syntactic and semantic correctness

is achieved after refactoring the code. For this, test suite comprising of

unit tests and acceptance test is run iteratively so as to have the good

design.

72

 Refactoring are mentioned by way of xrefactory plugin for faster delivery

and to save time.

4.8 CONCLUSION

A distributed framework has been proposed for Agile environment. Specifically,

pair programming and refactoring like practices has been discussed for handling different

challenges of distributed environment. The pair members for a pair can be identified

using proposed buddy identifier approach. The next subsequent chapter is related with

one of the regression testing technique regression test selection.

73

CHAPTER V

AGILE REGRESSION TEST SELECTION TECHNIQUE

5.1 INTRODUCTION

Agile software development (ASD) [15, 28] has attracted major players of the

software industry. This development approach has brought significant changes in the

organizations in terms of fast delivery, less documentation, more satisfaction and more

interactions. One of the important changes in ASD is acceptance of frequent changes

introduced by the customer. An effective handling of frequent changes during

development is one of the important motives for software professionals. These frequent

changes cause aggregation of test cases in the test suite and may affect the time to

delivery of software product to the customer. To manage this large test suite, an effective

test case management is needed so that past user stories does not regress. In this chapter,

regression test selection (RTS) technique is proposed which is based on the optimality of

path in a weighted story graph.

Todd L. Graves et al. [84] has discussed analytical and empirical evaluations of

the existing RTS techniques. They conducted an experiment to examine the relative costs

and benefits of several regression test selection techniques. The experiment examined

five techniques for reusing tests, focusing on their relative abilities to reduce regression

testing effort and uncover faults in modified programs. Their results highlight several

differences between the techniques, and expose essential tradeoffs that should be

considered when choosing a technique for practical application. In said work, optimal

connection approach in an Agile environment for an undirected graph is missing which is

less prone to faults.

Emelie Engstrom et al. [40] recites an efficient fix cache RTS technique. It makes

use of information that already is collected and stored in different databases. Setting it

into use involves mainly connecting these databases together. The empirical evaluation is

used in this technique. The set of test cases that were selected and executed found

significantly more defects per test case. The technique selected a small set of test cases,

so the number of faults found is very small compared to the number selected by the

74

manual method. The size of the cache is a factor that impacts on the number of selected

test cases. Future evaluations include varying the cache size, and evaluating the

efficiency for various sizes of the cache. The issue with this approach is to use expensive

cache which may have significant effect on the overall budget of the sprint.

The proposed RTS approach takes into consideration story point of the user

stories in an undirected graph and optimal nature of this proposed method removes other

risks of the development comprising potential edges of the undirected graph.

5.2 PROPOSED APPROACH FOR REGRESSION TEST SELECTION

RTS approach selects significant test cases from existing test suite depending upon

some factor so as to save time and effort involved in early defect detection during or after

the sprint. The proposed approach is based upon optimal connections [80] in the weighted

graphs. The methodology of the proposed work is shown in Figure 5.1. It consists of

following four components. Description related to components is given below:

 Story graph creator: Depending upon the existing and new user stories of

the system, a graph can be plotted so as to depict the relationship between the

stories and an edge from a source node to destination node represent the

relationship among the stories. Value on the edge is the effort involved for

travelling from source story to destination story.

 Path strength calculator: Story graph creator is input for finding strength of

any edge of the undirected graph. By using average path value (APV) and

average path length (APL) measures for direct and indirect edges, path

strength is found in an undirected graph. A measure of average path value

between nodes ni and nj is the ratio of path value to distance and a measure of

average path length between nodes ni and nj is the ratio of total value to

distance.

 Direct/ Indirect paths merger: These two path strength measures i.e APV

and APL, for undirected weighted graphs may identify optimal connections

between pairs of nodes that do not necessarily have the middle user stories

node which are connected in the graph. More specifically, this component

75

merges the optimal values corresponding to the specific user story. An optimal

connection in an undirected graph involves a combination of the middle nodes

with the most intense interactions

 Comparator and Selector: Last component of the proposed RTS Technique

is concerned with the optimal connections of the user stories. It helps in

selecting the significant test cases from the test suite of the user stories.

A case study to demonstrate the proposed RTS technique is discussed in the next

section. This case study is based on the user stories defined for the designations used in a

law firm. More specifically, user story graph is the basis for implementing the proposed

RTS technique.

Figure 5.1 A Path Strength based RTS Technique

5.3 CASE STUDY

Hierarchy for XYZ law firm starting from low level is secretary, associate, senior

associate, partner. Software product to be developed in an Agile environment for XYZ

law firm is to analyze the patents granted by the Indian patent office to different

76

applicants. For achieving successful developed product, first step is to dividing the epic

into different user stories. Stories are given in Table 5.1.

In the user stories mentioned below, associated roles are secretary, associate,

senior associate and partner. Partner is the person who can directly fetch data from

secretary; secretary submits report to the associate; associate submits report to the senior

associate and senior associate submits report to the partner. During data generation span,

secretary can interact with each other. Communication among different roles is assumed

to be dual in nature. Undirected graph corresponding to the specified user stories is

shown in Figure 5.2. This task is performed by Story Graph Creator component of the

RTS methodology shown in Figure 5.1. This component shows the linkage between the

user stories. Two way linkages among stories are represented by undirected graph. In this

graph, nodes are user stories and edges are dependency among user stories. For example,

user story 3 is dependent on user story 1, 2 and 4 and similarly user story 5 is dependent

on 1 and 4.

TABLE 5.1 REQUIREMENTS

Story # User Story for XYZ Law Firm (Client)

1 As a secretary1, I want to search list of patents granted by Indian patent

office to Y Applicant so as to find the technology trend of the software

market.

2 As a secretary2, I want to search list of patents granted by Indian patent

office to Z Applicant so as to find the technology trend of

telecommunication market.

3 As an Associate, I want to do analysis of data of Applicant so as to

identify the major players of the field and their significant contribution.

4 As a senior associate, I want to view summary report for all participants.

5 As a partner, I want to attract other players of the same market

depending upon their contribution so as to have more clients with

maximum benefit.

Respective weights on the edges are story points for the user story. Story points

represent effort involved/complexity factor for movement among any source node to

destination node. In short, story points shown on the edges indicate how output of one

77

story is considered as input for another user story. Story points are taken to be odd series

1, 3, 5, 7……., Lowest number represent lowest complexity and higher number represent

higher complexity. For the simplicity reason, user story 1 to 5 is represented by alphabets

P, Q, R, S, and T.

Figure 5.2 Weighted Story Graph

Weighted story graph can be converted into path story Table by considering

different paths (direct and indirect between every pair of nodes) using two parameters

namely APV and APL. This path story Table contains indirect paths for existing and non

existing edges of weighted story graph. Depending upon values of said parameters,

optimality can be identified by setting some criteria. A criterion of optimality for APV

and APL is finding the maximum entry in the relevant column of the path story Table.

For finding said parameters, initially distance between nodes, minimum value and total

path length is to be identified. Distance between nodes is calculated by taking into

account total number of links that exist between any two nodes of the weighted story

graph and minimum value is calculated by considering the path with intermediate nodes

78

but with minimum weight of the edge that exist between that path. Last parameter which

is total path length is calculated by adding weight of all the edges that exist between the

paths. For example, if path AB exists with intermediate nodes C and D in the undirected

graph, then use equations (1) - (3) for finding the value of equations (4) - (6). Refer Table

5.2 & 5.3 for finding optimality of path for indirect and direct paths of Figure 5.2.

AC = 5

(1)

CD = 6 (2)

DB = 3 (3)

Distance between nodes (d) = 3 (4)

Minimum value (m) = 3 (5)

Total path length (t) = 14 (6)

 Each entry in the respective Table shows some significance in relation with the

respective story. Any new change in the user story may have significant effect on its

related edges. Out of all the related links of that particular user story, a selection has to be

made that would make the effect more severe in terms of its story point. In Tables 5.2 and

5.3, this effect is shown by highlighting the specific cell. Maximum entry in the APV and

APL column with respect to the existing and non existing edge represents that relation in

respect of that effect. Maximum value of APV for example says that a binode like QT

with minimum value of d =2 (less links between nodes) has optimal calculation

(APV=1.50). Similarly, binode SP has d=2 and APV=2.50. Exceptionally, QS has d=3

(which is not minimum in this case) and APV=1. Rule for APV optimality calculation is

“APV is optimal for the case when d < max (d)”

Similar rule applies for APL of the “Nonexisting Edges” Table 5.2.

“APL is optimal for the case when d < max (d)”

“Existing edges” Table 5.3 shows different optimality rule for different binodes. For

example, QP has d=1(minimum in this case) and APV=3. APV has maximum value for

the path QP with minimum link 1. So, rule for APV for nonexisting edges is

79

 “APV is optimal for the case when d < max (d)”

But for APL, after examining the TABLE 5.3, values are optimal for the

maximum entry for the specific binode with d=maximum number of links. For example,

binode RS has APV=5 and d=1. On the other hand binode QP has APV= 4 and d=1. This

peculiar nature of optimality makes the rule little bit different. Rule for optimality of

existing edges says that

“APL is optimal for the case when d <= max (d)”

TABLE 5.2 NON-EXISTING EDGES

NONEXISTING EDGES (Indirect)

Binode Path d m t APV=m/d APL=t/d

QT QPT 2 3 8 1.50 4.00

QRPT 3 1 9 0.33 3.00

QRST 3 1 11 0.33 3.67

QPRST 4 3 16 0.75 4.00

QS QRS 2 1 4 0.50 2.00

QPRS 3 3 9 1.00 3.00

QPTS 3 3 15 1.00 5.00

QRPTS 4 1 16 0.25 4.00

RT RST 2 3 10 1.50 5.00

RPT 2 3 8 1.50 4.00

RQPT 3 1 9 0.33 3.00

SP SRP 2 3 6 1.50 3.00

STP 2 5 12 2.50 6.00

SRQP 3 1 7 0.33 2.33

“Existing edges” Table takes into account direct as well as indirect path for the

specific binodes. For binode RP, R is the source node and P is the destination node.

80

Direct path between R and P is RP and indirect path that exist between R and P are RQP

(via intermediate node Q) and RSTP (via intermediate nodes S and T). These nodes

which are actually user story may change at any time. To accommodate that change is

crucial job. Effect may transfer from one user story to another as all stories are inculcated

in closed loop. This effect may disturb direct as well as indirect paths. Also, not only

existing edges but non existing edges may even have stronger effect. The new changes

have the potential to affect all possible paths of the closed graph. For example there is

change in story Q which says that:

“As a secretary2, I want to search list of patents granted by Indian patent office of

Z & Z’ Applicant and want to review work of secretary1 so as to find the technology

trend of telecommunication market and to have a check on work for future motivation”

TABLE 5.3 EXISTING EDGES

EXISTING EDGES (Direct + Indirect)

Binode Path d m t APV=m/d APL=t/d

QR QR 1 1 1 1.00 1.00

QPR 2 3 6 1.50 3.00

QPTSR 4 3 18 0.75 4.50

QP QP 1 3 3 3.00 3.00

QRP 2 1 4 0.50 2.00

QRSTP 4 1 16 0.25 4.00

RS RS 1 3 3 3.00 3.00

RPTS 3 3 15 1.00 5.00

RQPTS 4 1 16 0.25 4.00

RP RP 1 3 3 3.00 3.00

RQP 2 1 4 0.50 2.00

RSTP 3 3 15 1.00 5.00

ST ST 1 7 7 7.00 7.00

81

SRPT 3 3 11 1.00 3.67

SRQPT 4 1 12 0.25 3.00

TP TP 1 5 5 5.00 5.00

TSRP 3 3 13 1.00 4.33

TSRQP 4 1 14 0.25 3.50

As Q is now modified user story, its sub parts‘s review reveals that involvement

of secretary 1 in it makes the task more cumbersome. In it, no new edges or nodes have

been added but still test suite would scale. Table 5.2 presented earlier depicts that Q is

attached with T & S user stories whereas Table 5.3 reveals that Q is attached with R & P

user stories. Optimal path information in terms of APV and APL for Q user story is

represented in Table 5.4.

TABLE 5.4 OPTIMAL PATH

NONEXISTING/EXISTING EDGES

Binode Path d m t APV=m/d APL=t/d

QT QPT 2 3 8 1.50 4.00

 QPRST 4 3 16 0.75 4.00

QS QPRS 3 3 9 1.00 3.00

 QPTS 3 3 15 1.00 5.00

QR QPR 2 3 6 1.50 3.00

 QPTSR 4 3 18 0.75 4.50

QP QP 1 3 3 3.00 3.00

 QRSTP 4 1 16 0.25 4.00

This Table presents paths which are optimal in two categories namely when

binode exists and when binode does not exist in the weighted story graph. In both

categories, indirect or direct path is chosen depending upon the APL value of specified

binode. For first binode QT of Non Existing type, APL value for two paths QPT and

82

QPRST is same (i.e. 4). In this specific case, out of these two indirect paths QPT would

be selected as corresponding APV value is 1.50 and number of links (d=2) are minimum.

For first binode QR of existing type, optimal APL value is 4.50 but number of links is 4,

so, in this case, path QPR would be selected which has APV 1.50 and corresponding

value of d is minimum i.e 2.

Second level of optimization is presented in Table 5.5. This is clear from Table

5.5 that when Q is changing then its effect would be on binodes QT, QS, QR and QP.

Corresponding paths of these binodes consist of direct as well as indirect paths.

Optimized weighted story graph for Table 5.5 is shown below in Figure 5.3. In it, bold

lines represent edges that exist and nonbold represents edges that are nonexisting and

have potential to be affected by change in Q user story.

TABLE 5.5 SECOND LEVEL OPTIMIZATION

Optimized Selection

Binode Path d m t APV=m/d APL=t/d

QT QPT 2 3 8 1.50 4.00

QS QPTS 3 3 15 1.00 5.00

QR QPR 2 3 6 1.50 3.00

QP QP 1 3 3 3.00 3.00

Figure 5.3 Optimized Weighted Story Graph

83

In an Agile environment, to accommodate any new change, team has to

concentrate on many types of testing so as to satisfy the customer and by making

optimized use of resources. Regression testing is that testing which consume most of the

resources. Running complete test suite during or after the sprint is tedious job. This RTS

technique helps in selecting only those test cases which are most relevant to the specific

binode. Also, further selection can be made if time is less. In this case, only existing edge

paths can be taken into account for finding the bug. For simplicity reason, considering

only QR and QP paths of the story graph. For example, each user story has 500 test cases.

Then, regression test suite would contain 2500 test cases in all. Running these test cases

in short span of one or two day seems to be impossible task when any change is

encountered. That’s why RTS way of temporarily selection is feasible approach to opt

for.

If QR and QP binodes are to be tested, then corresponding paths to be tested are

QPR and QP. After QP is fully tested, then for path QPR only half of the job is to be left

as QPR has two links namely QP and PR. Left link is PR only. PR edge weight is 3 story

point. It means after facing the complexity level of 3 for P user story, R user story can be

started as R is dependent on P user story output.

Similarly, for nonexisting edges, QT and QS binodes have path QPT and QPTS. It

is clear that QPT is subset of path QPTS. If QPT is running fine then one third of the

work is done and left part is only link TS.

5.4 RTS TOOL

 The proposed RTS technique has been implemented in Microsoft Excel. The

snapshots for the proposed technique have been shown in Figure 5.4-5.8.

5.5 CONCLUSION

This chapter discusses a RTS technique for selecting optimized user stories so as

to utilize resources to its fullest. It makes use of two important parameters namely

average path length and average path value. Optimized results are obtained by

considering APL and APV values. Validity of the technique is done by using the velocity

metric which is measured for a sprint. Velocity is a metric that predicts how much work

84

an Agile software development team can successfully complete within a two-week sprint.

A work is said to be successfully completed only when it is tested and executed

satisfactorily. With this technique, optimized selection of user story is done in less time

resulting in more productivity in terms of satisfaction and quality. The next chapter

discusses test case prioritization techniques for doing effective test case management.

Figure 5.4 Snapshot 1

Figure 5.5 Snapshot 2

85

Figure 5.6 Snapshot 3

Figure 5.7 Snapshot 4

86

Figure 5.8 Snapshot 5

87

CHAPTER VI

AGILE REGRESSION TEST CASE PRIORITZATION

6.1 INTRODUCTION

The Agile project management is an approach used in the software industry so as

to attract more customers. In this approach, processes and principles are dynamic in

nature. Here, team members and customers are the major parties involved during the

business deal. One of the representatives of the customer is always present on the

development site so as to give the instant feedback and for any future improvement in the

sprint. In ASD, work to be delivered to customer is frequent and response is also frequent

from the customer side. This response may comprise of improvement in the existing

system, new requirement, new work style, scalability of the existing system etc. At the

same time, customer may furnish new requirement that may disturb the original

functioning of the existing system. These later introduced changes may have several

unnoticed effects in the working system. These effects must be controlled in a planned

manner by the team members so as to deliver the quality deliverable to the customer on

time. Controlling of the existing system is the first priority as per the definition of the

regression testing which says that original modules should not regress by introduction of

new functionality/modules/user stories. Although, unit testing and acceptance testing is

an ongoing activity during the sprint as a part of regression testing, still some bugs may

go unnoticed due to lack of risk measure of any new requirement disclosed by the

customer.

In this chapter, an approach is discussed which is based on complete user story

matrix that helps in evaluating the overall design measure of the user story. This chapter

discloses prioritization of user stories on the basis of risk factor of the different user

stories of the system. Further to add on, this predicts the risk factor of any user story that

may have substantial effect on the existing stories. This measurement is done by

considering the story point of the user story and complete user story matrix. These results

are used to provide answer to question like if one user story is changing what other user

stories of the system should be examined. In other words, what other modules have

88

potential to change when any new module is introduced by customer after the sprint or

closure of the project. Also, this approach can be used for doing testing of the most

suitable module/user story of the system.

Regression testing is a way to do test case management in an efficient way. This

management is implemented by first performing user story prioritization and then

performing test case prioritization. TCP is implemented by proposing following three

techniques.

 Proposed Risk based TCP [11] technique which is based on user story

graph,

 Proposed Pattern based TCP [9] technique which is based on object

oriented dependencies, and

 Proposed Linguistic based TCP [8] technique which is based on Linguistic

parameters such as nouns and verbs present in the user story.

6.2 PROPOSED RISK BASED TCP TECHNIQUE

The Agile designs are dynamic in nature as these designs emerge over time.

Design is dependent on the requirements framed by the client at the time of conception of

an idea. As requirements keep on adding, design may evolve. The requirements in the

Agile environment are known as epic (overview of the major task in 2-3 lines). Further,

epic is splitted into small user stories. The next step following this splitting is the

estimation of the story points in context with the complexity of the user story. The block

diagram for the above process is represented in the Figure 6.1. In this Figure, story

splitter is one component that helps in splitting the epic into number of stories which are

further processed or executed in the following sprints. Estimation for user stories may be

done in many ways. One of the ways is planning poker in which many experts sit

together and depending upon their experience they assign some story point to the user

story.

The proposed approach for prioritizing the user stories is based on the story points

of the user story and depending upon these story points, a risk measure matrix has been

proposed that is the outcome from complete user story matrix’s values. The disclosure of

89

the proposed work comprises user story graph, complete user story matrix, design matrix

and risk measure matrix. These components are shown below in the Figure 6.2.

6.2.1. User Story Graph

First and foremost component is user story graph. User story graph shows

connections among splitted user stories and their dependence in terms of user story point.

A user story point is a measure to estimate the effort involved in implementing a user

story. Table 6.1 represents the user story point estimation for the splitted stories. In this

Table, four user stories are estimated to have story point 1, 8, 3 and 2 respectively. These

estimations are based on planning poker game. Its primary downside has been that all

participants/experts need to be sitting in the same room with a physical deck of cards in

their hands. This story point estimator is an abstract value as it is based on the baseline

that is chosen by the experts. This story point value is further used in drawing user story

graph. The links between user stories are represented by some weights. This weight is

sum of individual story point of the connected story. For example, edge PQ has weight 9,

which is sum of individual story points, as P story has connection with Q and S. P has

story point 1 and Q has story point 8. In total, their combined effect is 9. Similarly, other

weights are calculated.

Figure 6.1 Agile Environment

90

Figure 6.2 Risk Based Model

Table 6.1 Story Effort

S.No. Story Name Story Point

1. P 1

2. Q 8

3. R 3

4. S 2

On this basis, a weighted graph is drawn as shown in Figure 6.3. Links of the

graph are shown to be undirected. Thus, P and Q user stories are dependent on each

other. It means P and Q are required for moving to next step. That’s why combined effort

is calculated. The first level dependence matrix for Figure 6.3 is shown in Table 6.2.

Diagonal entries in the first level dependence matrix are shown to be 0 as no link exists

between self-user stories. Rest of the non-zero entries is as per the user story graph. For

example, in Figure 6.3, link PR does not exist, so, in Table 6.2, PR and RP cell entry is

filled with Not Applicable (NA).

91

Figure 6.3 User Story Graph

Table 6.2 First Level Dependence Matrix

 P Q R S

P 0 9 NA 3

Q 9 0 11 10

R NA 11 0 5

S 3 10 5 0

6.2.2 Complete User Story Matrix

The complete user story matrix is the matrix showing effective effort for user

stories using indirect and direct links weights in user story graph. For example, if client

has introduced change in user story P of user story graph then definitely user story S’s

effort would change as there is direct link between these two user stories. On the other

hand, rest of the user stories effort will change as indirect paths exist from source P to

destination S. D represents direct link and I represents indirect link. Considering the same

example, P to S gives one direct link and two indirect links. Their combined weights is

92

proposed to be taken as sum of three factors namely story points, volatility rate and

implementation dependency. These factors are discussed below:

 Story Point Weight – This weight is based on the edge weight of the

nodes in the user story graph. During estimation process, story point is

estimated for every user story using Planning Poker technique or any other

technique. In this Table 6.3, from source to destination, indirect link story

point weight has been calculated by multiplying intermediate edges

weight. For example, from P to S, indirect link is PQS. In this path, PQ

edge weight is 9 and QS edge weight is 10. Accordingly, story point

weight for indirect link PQS is 90. Similarly, this weight may be

calculated for other indirect links between same source and destination

nodes.

 Volatility Rate – Since in Agile changes are always accepted, there may

be changes in the existing user stories. Therefore, volatility rate of user

stories must be considered as a risk factor. Consequently, there may be

change of an indirect link in the user story graph over time. This measure

is connected with a chance of occurrence of any new node in the existing

user story graph or a chance of occurrence of any change in the existing

node. This measure is based on the input given by Product Owner,

Developer, Tester or Market Analyst of the team. Each of the team

members may be provided with a questionnaire. In the questionnaire,

questions are designed to measure volatility rate. Types of questions (See

Table 6.3) in the questionnaire may be related to:

Table 6.3 “Questions-Volatility Rate”

1. How many users can be scaled up in future for the usage of specific user story?

2.
How many more internal parameters may be added to accommodate that change?

3.
On what scale, competitors are upgrading to new versions?

4.
Is this long term goal or short term goal?

5.
Whether real time data is involved in the execution or not?

93

Based on answers of questions from different team members, a scaling

factor may be assigned for every subsequent link between source and

destination, whether direct or indirect. For the sample case, a scaling of 1-

5 has been considered where 1 is more volatile and 5 means less volatile.

 Implementation Dependency – Implementation dependency is also a

measure which is connected with technical dependency of different user

stories as per the developer or market analyst. In this case, questions (See

Table 6.4) may be related to:

Table 6.4 Questions-Implementation Dependency

1. How frequently any technology is changing which is used for developing user story?

2.
How fastly quality standards are changing?

3.
How frequently team members are switching an organization?

4.
How frequently competitor is launching product in the market?

Based on answers of questions from different developers and market

analyst, a scaling may be assigned for every subsequent link between

source and destination, whether direct or indirect. For the sample case, a

scaling of 1-5 has been considered where 1 is more dependent and 5

means less dependent.

After calculating these three factors, a total weight is calculated by adding these

three factors as shown in Table 6.5. Since these events are not mutually exclusive, the

following equation is used to track the cumulative effect C(s) when there is any change in

the existing user story S.

C(s)=P(X) + P(Y) + P(Z) - P(X).P(Y) - P(Y).P(Z) - P(X).P(Z) + P(X).P(Y).P(Z)

 (1) [79]

Where P(X) is Weight of direct path

 P(Y) is Weight of indirect path 1

 P(Z) is Weight of indirect path 2

94

Using equation 1, cumulative effect, C(s), of changing user story S is 378481.

Similarly, other values may be calculated using equation 1. The method for finding paths

from any source node to destination in user story graph is shown in Figure 6.4.

Table 6.5 Effort Data

Links Type

of Link

Story Point

Weight

(SPW)

Volatility

Rate (VR)

Implementation

Dependency (ID)

Total

Weight=SPW+VR+ID

P-S Direct 3 4 2 9

P-Q-S Indirect 9*10=90 1 5 96

P-Q-R-

S

Indirect 9*11*5=495 3 1 499

In this Figure, P is the source node and S is the destination node. The direct and

indirect paths between P and S may be calculated by calculating first order dependence

matrix which is given by Myers [69] and adjacency matrix which may be found by

looking at the connections between nodes of the user story graph. For example, in the

adjacency list P is connected to Q and S. Similarly, Q is connected with P, R, and S node

of the user story graph. For finding direct path from P to S, adjacency list is analyzed

deeply. Source node P has two more connecting nodes such as Q and S. The direct path

exists in the user story graph from P to S as S is the destination node in the first row of

the adjacency list. Further, P is connected with Q and Q is connected with P, R and S. So,

indirect path can be found by passing through vertex Q. Hence, first indirect path is PQS.

Furthermore, Q is connected with R and R is connected with S. Thus, next indirect path

in the user story graph is PQRS.

In this user story graph, self loops are not considered. More specifically, first

indirect link has three nodes or two links. The second indirect link has four nodes or three

links. These links are shown in Figure 6.4 in Links column name.

95

Figure 6.4 BFS Based Indirect Path Implementation

96

Depending upon number of indirect paths, equation 1 can be extended

accordingly. Indirect paths in an undirected graph may be determined by using breadth

first search implementation which is based on adjacency list. For the discussed case,

complete user story matrix is shown in Table 6.6. Sixth Column of the matrix is sum of

the column entry in individual row of the matrix. This column is known as dependency

value. This value is determination of the risk involved for the user story. Maximum value

in the Table is for user story S and minimum value is for user story Q. Maximum value in

dependency matrix is representation of high risk story. Therefore, planning and

estimation efforts are more for user story S as compared to Q, R, and S user story. That’s

why, focus is more on S user story by team members so that risk can be tackled easily.

Table 6.6 Complete User Story Matrix

 P Q R S

Dependency

Value=P+Q+R+S

P 0 64329 -1817 378481 440993

Q 64329 0 151801 23791 239921

R -1817 151801 0 347301 497285

S 378481 23791 347301 0 749573

6.3 OUTCOMES

The proposed model shows that user story S is high risk story. The cumulative

results shown in Table 6.7 predicts that P or any other story is directly or indirectly linked

to rest of the stories and change in respect of other story may affect P or any other

corresponding user story. Nowhere, in the prior art it is accomplished that story point,

volatility rate and implementation dependency are linked with the risk factor of any user

story. So, shown results are useful for prioritization of existing user stories after

calculating complete user story matrix. Risk matrix reveals the order of user story

prioritization as S, R, P and Q. Q user story is least risky story.

97

Table 6.7 Risk Measure Matrix

STORY DEPENDENCY

VALUE

DEPENDENCY-RISK

P 440993

Q 239921 Least Dependent- Less Risk

R 497285

S 749573 Most Dependent-More Risk

After finding the most risky user story, testing efforts may be calculated from the

beginning of the sprint. A high risky story of the sprint is always center of attraction.

Every reviewer, of that user story, has to focus more for accomplishing bug free

deliverable as compared to less risky story. It does not mean that less risky story may be

ignored. Both have equal importance. Only difference is high risky story demands more

reviews as compared with less risky story. Also a high risky story demands experienced

professional as compared with a less risky story. In light of this, a reviewer may

concentrate on following points before releasing deliverable (software) to customer from

her end:

(a) Minimum usage and maximum usage of deliverable is checked.

(b) Optimum resources needed for running software are verified.

(c) Ready story of user story is mapped with the deliverable.

(d) Previous deliverable mistakes are not repeated if customer is same.

(e) Standard set by customers are fulfilled whether she is pilot or non pilot

customer.

(f) Criteria such as quality and timely delivery of outcome is fulfilled.

(g) Manual has to be released along with the deliverable for handling exceptional

conditions.

98

After prioritizing the user stories of the SBL, test cases are prioritized based on

the respective risk factor of the user stories. More specifically, high risky user story test

cases are executed prior to the less risky user story of the SBL. Accordingly, TCP is

executed based on the risk measure of the respective user story.

6.4 PROPOSED PATTERN BASED TCP TECHNIQUE

Emerging technologies and developments are explored in software development

domain by different software professionals so as to deliver the user stories of customers.

Temporal changes proposed by customers for her project may give birth to new

technologies and developments. Also, in some cases market standards forcefully demands

change in existing principles and policies. There may be two problems along with the

introduced change so as to fulfill specific needs. First and foremost problem is acceptance

among team members for adapting to new technology, new environment or new solution

for existing problem. Secondly, risk involved while adapting to new change is

cumbersome. An exact risk measurement for user story may be implemented using first

proposed technique discussed in section 6.2 which is based on user story graph. After

identifying most risky user story from the SBL, test cases may be managed using any of

the proposed regression TCP techniques. This section focuses on pattern based TCP

technique.

 In [72], a comparative analysis was performed among different patterns of object

oriented software to find out which design pattern is more error prone. For this purpose,

researchers had taken five open source systems and among those, Java files, which

contain bugs, were observed for pattern occurrence. Four design patterns were considered

for evaluation; Singleton, Factory, Composite and Adapter. Different hypotheses were

established and statistical tests were performed. It had been evaluated that Adapter

pattern is more error prone as compared to other patterns. One other reason of being more

error prone is that it is excessively used in all the projects especially Hibernate Project.

When a pattern will be excessively used then its tendency of producing errors

would be less, when selection of pattern is accurate, or more, when pattern is not

executed correctly on the desired application. This analysis may also vary based on the

type of project on which it is implemented. In object oriented applications, there is a high

99

chance of extensibility or scalability. Therefore, errors might rise to an unaccepTable

level. That’s why in this section, a technique to evaluate object oriented connections in

user stories is proposed and further, on the basis of the object oriented connections, TCP

has been implemented by following rules of the proposed test pattern which are linked to

the internal design of the object oriented components.

6.4.1 Proposed “Test” Pattern

In this section, focus is on more severe module user stories after introducing

minute change in the original user story. The identification for the most severe module

having strongest intensity is done using first order dependence matrix concept that matrix

was introduced by Myers.

The test pattern for the common problem of frequent change in an Agile context is

the reason for its existence. As customer or one of his representatives is always at the

development site for supplying instant feedback, so, by this specific activity his

contribution is more demanding for considering him in many other related tasks that are

significant for user story enrichment.

Customer may or may not be technical sound but his instant feedback is useful for

detecting and removing defects at an early stages (at the time of unit testing, integration

testing, incremental testing or regression testing during sprint) of the sprint. Customer

cannot frame good test cases for defect detection but skeleton of user story is specified by

him/her. The test pattern is a kind of pattern which is simple and effective to use for

customer satisfaction. The Template for test pattern is shown in Table 6.8.

The proposed technique for prioritizing the test cases is based on following four

components (See Figure 6.5). The components are:

1. First Order Dependence Matrix Calculator: In this component, call graph

is created using first order dependence matrix (introduced by Myers) for the

user story. This call graph is applicable for one user story at a time and

consists of linkages of nodes for each task of the user story. Different tasks

(Class) of the user story are connected by coupling mechanism and one class

is tightly connected with its data and methods by cohesion principle.

100

2. Dependency Finder: This component finds the dependencies among the

various tasks by considering the output from the first component. More

specifically, directly dependent and indirectly dependent class are identified

for the assigned user story. Finally, objects of the changing task in relation

with the dependency are identified.

3. Test Case Generator based on Dependency diagram and Relationship

diagram: This component generates the test cases for the identified classes

and objects based on the relationship diagram between objects.

4. Test Case Prioritizer: This component prioritizes the generated test cases.

The first component has been explained here for the reference as output of first

order dependence matrix is used as input for the proposed TCP technique. The rest of the

components of this model are explained in detail by considering one case study which is

discussed in the next subsection. This case study is related with one user story having

multiple tasks and user of the user story introduces new task in the existing user story.

The next subsection focuses on said issue of dependencies among existing tasks for the

purpose of prioritizing test cases for the said user story.

Table 6.8 Test Pattern

Name Test Pattern.

Intent To Prioritize Test Cases of Object oriented

Application.

Motivation To save time and to have good quality for the

user story.

Apply within the sprint (when there is a change in the

user story).

Participants story point, story effort index and customer’s

priority for specific user story.

Collaborations through daily meeting for short duration (online

in case of distributed teams).

Consequences less defects for user story in small sprint.

101

Figure 6.5 Working Model for pattern based TCP

6.4.2 Case Study

Considering, for example, a user story, “getting the patent to be granted by

government of India to have hold on all the rights in the specified territory by any

patentee” (S). In this user story, primary parties are patent office and applicant. On the

other hand, secondary party is public and it is not always active. Tasks for the user story

S are:

 Filing the application with complete specification in the patent office by

applicant for his invention. (c1)

 Invention is published online in the patent office’s official journal (weekly

issue) after 18 months. (c2)

 Request for examination for the said invention within 48 months. (c3)

 First examination report by patent office to applicant. (c4)

 Office Action/Office Action Reporting is generated by patent

office/applicant until satisfaction level is reached for putting an

application in order for grant within 12 months. (c5)

102

 Pre grant opposition done by opponents/public to patent office. (c6)

 Response sent by applicant to patent office. (c7)

 Grant of patent for 20 years by patent office. (c8)

So, three classes namely patent office, patentee and public are interconnected with

each other with respect to the single user story S by applying first component (See Figure

6.6). Thus, it is clear that classes are dependent on each other especially primary one.

Secondary, one is active only in case of pre grant opposition after publication.

Suppose there is a change (c9) in the user story which says that opposition from

public is allowed after grant of patent also or after c8. Now, situation is little bit complex

as public class is becoming active.

Adding c9 will introduce some ambiguous linking between primary class’s

methods. In this case, the proposed test pattern may be applied, where direct as well as

indirect class dependency exists and need is to prioritize the test cases so as to gain

quality.

Figure. 6.6 Patent Grant Procedure

After applying the first component, next component is Dependency Finder. More

specifically, in this case, objects of classes are not directly dependent on each other rather

these objects may be indirectly dependent based on c9. Steps for component Dependency

Finder are:

103

 Find the directly dependent class and indirectly dependent class from the

Figure 6.6.

 Identify the objects of the changing task‘s with respect to the dependent

classes (directly and indirectly).

 Find the relationship of objects of all the related classes in specific methods.

After applying steps of Dependency Finder, relationship of classes for the

specified user story is shown in Figure 6.7. In this Figure, dotted lines represent indirect

relationship and solid lines represent direct relationship between classes for the user story

S. Also, for every class in the relationship diagram, object list and method list is there.

Complexity of the change is dependent on number of classes present in the user story.

But in Agile culture, less is more concepts is used, so, small user story would have small

number of classes in one sprint and relationship would be strong.

Time of delivery of user story to customer is very frequent in nature. So, there is a

need to find defects at an early stage of development. The subsequent components are

linked to the prioritization of the test suite for S.

Figure. 6.7 Relationship Diagram

104

Steps for prioritization are:

 Create the dependence diagram; it is a smart way for representation of class

linkages in a user story, (see Table 6.9) and is to be displayed along with the

story board (see Table 6.10).

 When a significant change is encountered in the user story, observe the

dependence diagram and relationship diagram as discussed earlier to identify

the intensive classes and objects (with relevant data members and methods) of

the user story. (Third Component)

 Sort the records of the test suite on the basis of dependent and indirectly-

dependent objects by considering relationship diagram and dependence

diagram (Checking non null entries in the test suite Table).

 Apply second sort now on the basis of maximum number of non-null entries

for existing objects in the classes for one particular user story.

 Frame new test suite Table after doing prioritization (Fourth Component).

Table 6.9 Dependence Diagram

DEPENDENCE DIAGRAM FOR S1

CLASS # DIRECTLY

DEPENDENT

INDIRECTLY DEPENDENT

1 4, 5 2, 3

2 …. …..

.

N ….. …..

6.4.3 Results & Analysis

The purpose of this analysis is to prove that quality component is optimal one as

compared with non-prioritization scheme of regression testing. Generated test suite (TS)

is given in Table 6.11 and after considering dependence and relationship diagram, new

test suite is shown in Table 6.12 in which sorting is applied.

105

Table 6.10 Story Board

US# Ana

5

Dev

2

Test

3

Rel Done DepDiag

S1 Task1 Task1 Task1

Task2 Task2 Task2

Task3 Task3

Task4 Task4

Task5 Task5

S2 --- --- ---

Ana-Analysis Dev-Development

Test-Testing Rel-Release

Done-Done Dep Diag-Dependence Diagram

US-User Story

Suppose O1-O4 are objects of public class, Op1-Op3 are objects of patent office

and Opp1-Opp2 are objects of applicant class from Figure 6.7. Non zero entries in Table

6.11 for test cases 1,2,3,4,5 are 7,6,5,5,4. Out of all, find the nonzero entries for direct

class objects. Directly dependent class is patent office and indirectly dependent class is

applicant. Objects of directly dependent class are Op1-Op3. After doing sorting on this

basis, series of test cases would be by excluding 5 number test case as all the entries are

null for specified objects (Op1-Op3). The rest of four test cases are needed to be sorted.

Ascending order series for four test cases for non-zero entries is 1,2,2,3 for test

cases number 4,1,2,3. Out of these results, maximum number is 3. So, priority would be

high for 3 number test case. Out of tc 1, 2 which one will take priority depends upon non

zero entries for indirectly dependent classes. Test case 2 has higher priority as compared

with test case 1 as Op1 and Op2 has potential to affect Opp1 and Opp2. If there is no

such difference then either of two test cases may be considered.

106

6.4.4 Phases in Test Pattern

This test pattern is based upon the observer pattern under behavioral category. In

it, test cases are prioritized for the purpose of saving time in an Agile context by

considering dependence diagram of the story stories which is updated from time to time.

Main phases of this pattern (See Figure 6.8) using components of Figure 6.5 are:

Table 6.11 Generated Test Suite

TC

O1 O2 O3 O4 Op1 Op2 Op3 Opp1 Opp2

1 1 2 3 4 2 - 3 1 -

2 1 2 - - 3 4 - 4 5

3 - - 2 3 5 5 5 - -

4 1 2 3 4 5 - - - -

5 - - 3 4 - - - 1 2

Table 6.12 New Test Suite

TC

O1 O2 O3 O4 Op1 Op2 Op3 Opp1 Opp2

3 - - 2 3 5 5 5 - -

2 1 2 - - 3 4 - 4 5

1 1 2 3 4 2 - 3 1 -

4 1 2 3 4 5 - - - -

 (1) Call graph and test case generator-Generator

(2) Dependent and indirectly dependent class identification-Finder

(3) Prioritization of test cases using dependence diagram-Prioritizer

107

Figure 6.8 Test Pattern

6.5 LINGUISTIC BASED OBJECT ORIENTED TCP TECHNIQUE

TCP techniques are customer requirement-based techniques, coverage-based

techniques, cost effective-based techniques, chronographic history-based techniques etc.

Customer requirement-based techniques are methods to prioritize test cases based on

requirement documents. Coverage-based techniques are methods to prioritize test cases

based on coverage criteria, such as requirement coverage, total requirement coverage,

additional requirement coverage and statement coverage. Cost effective-based techniques

are methods to prioritize test cases based on costs, such as cost of analysis and cost of

prioritization. Chronographic history-based techniques are methods to prioritize test cases

based on test execution history. In this section, an alternate technique based on linguistic

analysis of the user stories has been explained. This technique identifies noun and verb

present in any user story. Further, identified nouns and verbs are used to find the sentence

priority score of the user story by matching identified nouns and verbs with the nouns and

verbs of the new user story. The block diagram for this technique is shown in Figure 6.9.

In Figure 6.9, a technique for TCP has been shown using various components which are:

 Story Prioritization: This component prioritizes the existing user stories which

are formal requirements framed by the team members and customer. The

prioritization is based on the number of punctuations present in the user stories.

For achieving this goal, the total number of punctuations is counted in each user

108

story and a user story with higher no. of count will be treated as user story which

require more effort. These prioritized are then developed during the sprint.

 New User Story: In this component, user introduces new user story in the

existing working system. Due to this addition in the existing system, there might

be some effect on the existing user stories which are developed previously. That

effect may be calculated using next component which is based on the linguistic

parameters such as noun and verbs.

 Noun & Verb Identifier: This component identifies linguistic parameters such as

noun and verb present in the existing user stories, ready stories of existing user

stories, ready story of the new user story and the new story.

 Matching User Stories: This component performs the matching between noun

and verb of the new user story with noun and verb of the existing user stories.

Also, noun and verb of the ready story of new user story are matched with noun

and verb of the ready story of the existing user stories. After matching the user

stories, dependency among new user story and existing user stories is identified.

 Sentence Priority Score: On the basis of the identified dependencies among

various user stories, sentence priority score of each test case is calculated by

considering the number of nouns and verbs in the existing test suite of the existing

user stories. The priority of a sentence over the other sentences is calculated using

story point (SP) of the user story, customer priority (CP) and effect (Eu) where Eu

is the product of no. of nouns and verbs present in any sentence.

n

 SPS = ∑ SP*CP*Eu (2)

i=1

 Prioritized Test Suite: This component finally prioritizes the existing test suite

by sorting the values of the sentence priority score. A score with higher value

rates high priority to test case as compared with a score with lesser value.

109

Figure 6.9 Linguistic TCP Technique

6.5.1 Story Prioritization

The proposed work includes two levels of prioritization, namely, story

prioritization and test case prioritization. In this section, story prioritization has been

described in detail. Story prioritization may be performed by a method in which

punctuation marks are of great importance. For the purpose of attaining quality,

punctuated user story has to be reviewed two times. One review may be performed by

scrum master, if SCRUM methodology is followed, or team member and other review by

Client Representative (CR). Freezing of user story is the important step, as further work

is to be implemented, on this final user story. Next step is to prioritize user stories by

using excel formulas. Len and Substitute formulae have been used to count the number of

individual punctuation in the user story. For example, following combined formula has

been used. (See Figure 6.10)

=LEN(B2)-LEN(SUBSTITUTE(B2,",",""))

Where, B2 represents any cell in the excel sheet, and 2
nd

 argument of the

Substitute function is the specific punctuation that is to be search in the B2 cell. Also,

110

sum function is used to calculate total number of occurrences of punctuations in a cell.

Respective formula for the same is:

=SUM(C2:K2)

Where, C2 to K2 range is selected for performing addition of specific values.

After applying these functions, sort was performed so as to get the most risky user story.

(See Figure 6.11)

More punctuations in a user story signifies more breaks,

More breaks in user story signifies more relations/linkages/coupling,

More relations in a user story signifies more dependencies,

More dependency in a user story signifies more risk,

More risky user story means more effort required.

Figure 6.10 Total Punctuation

111

Figure 6.11 Story Prioritization

Figure 6.11 shows the priority order for the user stories, in terms of risk, of a

given project. Order is as follows:

2 < 7 < 5 < 8 < 4 < 6 < 9 < 3 < 1 < 10

User story 10 is the most risky story and user story 2 is the least risky story. In

this way, story point marking for a user story becomes easy and also, effort estimation for

completing any user story can be calculated. In addition, more risky story would have

more number of confirming points.

The rest of the components are further explained in detail by considering one case

study. The case study has been discussed in the next subsection.

6.5.2 Case Study

Considering the scenario in which online shopping store is managed by an

administrator and following is the list of prioritized user stories which are existing in the

system (See Table 6.13). In respect of Table 6.13, noun and verb are framed (See Table

6.14 & 6.15 for the same).

112

Table 6.13 User Requirements

STORY # User Story

1 As an administrator, I want to add items in the women clothing section so as to have

updated catalog

2 As an administrator, I want to add items in the kids clothing section so as to attract kids

3 As an administrator, I want to add items in the kitchenware section so as to attract hotel

management fellows

4 As an administrator, I want to add items in the electronic section so as to attract the users.

5 As an administrator, I want to see frequent users of online shopping store so that I can

send them new offers

6 As an administrator, I want to see daily sales of items so as to maintain the account details

7 As an administrator, I want to attract users so as to increase sales

8 As an administrator, I want to maintain stock so that no shortage of items could be there

Table 6.14 Noun Table

STORY # Noun 1 Noun 2 Noun 3 Noun 4 Noun 5

1 Administrator Items Women Clothing

Section

Catalog

2 Administrator Items Kids Clothing

Section

3 Administrator Items Kitchenware

Section

Hotel

Management

Fellows

4 Administrator Items Electronic

Section

Users

5 Administrator Users Online

Shopping

Store

New Offers

6 Administrator Sales Items Account

Details

7 Administrator Users Sales

8 Administrator Stock Items

Table 6.15 Verb Table

STORY # Verb 1 Verb 2 Verb 3

1 Want Add Updated

2 Want Add Attract

3 Want Add Attract

4 Want Add Attract

5 Want See Send

6 Want See Maintain

7 Want Attract Increase

8 Want Maintain

Stories written in Table 6.13 are not clear in terms of preciseness means what

needs to be done by the respective story. So, Slicing of the respective stories is needed.

The 'definition of done' tells us when a feature is completed and is ready for release. On

the other side, the 'definition of ready/Confirm Story/Story with Acceptance criteria' is

the criteria a user story has to meet before it is ready to be passed to the team and taken

113

into a sprint. The definition of ready and the definition of done are two points in the

sprint life cycle – one defines when a user story is ready to go in, and the other defines

when a user story is ready to come out. Ready story for each of the existing requirements

(1-8) are given below (See Table 6.16-6.23):

Table 6.16 Ready Story 1- Acceptance Criteria

A Administrator can see the new catalog

B Items are added in the exact Price range

C Items are added in the exact Color range

D Items are added in the exact Brand types

E Items are added in the exact size range

F Items are added in the exact Dress section (Formal, Casual, Ethnic, Fashionable……)

Table 6.17 Ready Story 2- Acceptance Criteria

A Administrator can see the new catalog

B Items are added in the exact Price range

C Items are added in the exact Color range

D Items are added in the exact Brand types

E Items are added in the exact age range

F Items are added in the exact Dress section (Party Wear, Daily Wear, Night Wear ……)

G Items are added in exact Gender section

Table 6.18 Ready Story 3- Acceptance Criteria

A Administrator can see the new catalog

B Items are added in the exact Price range

C Items are added in the exact Color range

D Items are added in the exact Brand range

E Items are added in the exact Category (Serving, cooking, Storing, Cutlery ….)

F Items are added in the exact size range

Table 6.19 Ready Story 4- Acceptance Criteria

A Administrator can see the new catalog

B Items are added in the exact Price range

C Items are added in the exact size range

D Items are added in the exact Brand range

E Items are added in the exact category (Kitchen Related, Utility, Entertainment….)

F Items are added in the exact color range

Table 6.20 Ready Story 5- Acceptance Criteria

A Administrator can see the list of frequent users

B Users are selected on the basis of criteria (Monthly, Biweekly, weekly, daily ……..)

C Users are provided with different kinds of offers

D Offers are valid for selected category (Kids, Women, Men, Hotel Management

Fellow….)

E Frequent Users are of two types (Maximum amount range, Maximum number of

items…….)

Table 6.21 Ready Story 6- Acceptance Criteria

A Administrator can calculate the total daily sales of items

114

B Administrator can bifurcate payment by cash/credit/net banking /Cash on delivery

C Administrator can calculate the daily sales of items for any section

D Administrator can calculate the daily total profit earned

E Administrator can calculate the daily total profit earned for specific section

F Account Reports are generated on different basis (weekly, monthly………….)

Table 6.22 Ready Story 7- Acceptance Criteria

A Administrator has different promotional schemes for different sections of store

B Administrator can emphasize on specific section for increasing sales

C Policies are flexible enough

D Employee/customer Referral is allowed and subsequent schemes are there.

Table 6.23 Ready Story 8- Acceptance Criteria

A Administrator can order new items by checking the stock catalog

B Administrator can find the total shortage of items in the online store

C Administrator can do the payment online after giving order of shortage items

D Administrator can generate report for less items in the stock.

In respect of all the ready stories of original stories (1-8), noun and verb Table are

given below (See Table 6.24 & 6.25).

Table 6.24 Ready Story-Noun Table

STORY # Noun 1 Noun 2 Noun 3 Noun 4 Noun 5 Noun 6 Noun 7

1 Price Color Brand Size Dress New

2 Price Color Brand Age Dress New Gender

3 Price Color Brand Size Category New

4 Price Color Brand Size Category New

5 List Criteria Types Category

6 Payment

method

Section Profit Report Basis

7 Schemes Section Online

Shopping

Store

Employee

Referral

User

Referral

8 New Online

Shopping

Store

Shortage

items

Online

Payment

Order Report

Table 6.25 Ready Story-Verb Table

STORY # Verb 1 Verb 2 Verb 3 Verb 4

1 See

2 See

3 See

4 See

5 Select Provide Valid

6 Calculate Bifurcate Generate

7 Emphasize Allow

8 Order Find Do Generate

Suppose customer and business analysts have felt the need of updating the

existing software application of online store through several meetings so as to face the

115

competitive world. As per them, new requirement is related to have satisfaction for all

users. (See Table 6.26-6.28 for the same)

Table 6.26 New Requirement

STORY # User Story

9 As an administrator, I want that users should be able to search items in the specific

category so as to satisfy users

Table 6.27 New Requirement- Noun Table

STORY # Noun 1 Noun 2 Noun 3 Noun 4

9 Administrator Users Items Category

Table 6.28 New Requirement- Verb Table

STORY # Verb 1 Verb 2 Verb 3

9 Want Search Satisfy

Similarly, ready story is created for new requirement and for corresponding noun

and verb Table See Table 6.29 to 6.31.

Table 6.29 Ready Story 9- Acceptance Criteria

A(3/5) User can search an item in the specific category (Women, kids, Kitchenware, electronic

etc)

B(3/4) User can search items as per the different criteria (brand, color, price, age, size, gender

etc)

C(1/2) Satisfaction level of user should be high by giving on time delivery of products

D(1/5) User can login

Note: Numbers in bracket represent story point and customer priority of the story

Table 6.30 New Ready Story-Noun Table

STORY # Noun 1 Noun 2 Noun 3 Noun 4 Noun 5 Noun 6 Noun 7

9

Women Kid Kitchenware Electronic Brand Color Price

Noun 8 Noun 9 Noun 10 Noun 11 Noun 12 Noun 13

Age Product Satisfaction

Level

Time Size login

Table 6.31 New Ready Story-Verb Table

STORY # Verb 1

9 Give

Now, next step is to map the new story noun Tables (6.27 and 6.30) with the

Tables (6.14 and 6.24)

Table 6.32 Noun Dependent Story Table_a (6.24 & 6.30)

New Requirement No. Dependent Story #

9 1,2,3,4

116

Table 6.33 Noun Dependent Story Table_b (6.14 & 6.27)

New Requirement No. Dependent Story #

9 1,2,3,4,5,6,7,8

After comparing Table 6.32 and 6.33, we note that story 9 is dependent on 1, 2, 3

and 4 which are common entries in both the Tables.

Moving next, map the new story verb Tables (6.28 & 6.31) with the Tables (6.15

and 6.25) so as to identify the dependent user stories.

Table 6.34 Verb Dependent Story Table_a (6.25 & 6.31)

New Requirement No. Dependent Story #

9 No match

Table 6.35 Verb Dependent Story Table_b (6.15 & 6.28)

New Requirement No. Dependent Story #

9 1,2,3,4,5,6,7,8

After comparing Table 6.34 & 6.35, we note that story 9 is not dependent on other

stories which are common entries in both the Tables. From this analysis, we come to a

conclusion that story 9 is dependent on stories 1, 2, 3 and 4. In case, some data would

have been generated from 6.34 & 6.35 Tables then we would have added that number to

previous Tables’ result (6.32 & 6.33). It means out of the total regression test suite of all

the stories we have to select test cases of stories 1, 2, 3 & 4. This phenomenon is known

as regression test case selection (RTS). Suppose test suite for each user story consists of

1000 test cases, thereby, after RTS, test suite would consist of 4000 test cases.

Organization: XYZ

Application: Online Store

Assumption: Normal Agile Testing (A)

If new user story need to be tested within a single sprint of two weeks then

running these 4000 test cases is very tedious task. One option is to adopt automation

which is a costly affair but simple and fast. Second option is to do prioritization of test

cases so as to have fast and safe testing. Number of verbs for selected user stories (1, 2, 3

& 4) is 4 and number of nouns corresponding to 1, 2, 3 & 4 are 11, 11, 10 & 10. Effect

117

(Eu) of noun and verb on user story 1, 2 3, and 4 is 44, 44, 40 & 40. Equation for the

same is:

Effect on User Story (Eu) = Number of verbs for story (v)*no. of nouns for story (n)

 (3)

The test suite for all the selected user stories (1, 2, 3, 4 & 9) is given in Table

6.36-6.39. Notation used for test cases is N1.N2TCN3.N4:N1-Sprint #, N2-Story #, TC-

Test Case, N3-Test Case Heading, N4-Test Case Subheading. Story number 1, 2, 5 & 6

are done in sprint 1 and story number 3, 4, 7 & 8 are done in sprint 2. Two parameters are

considered for doing some planning. First is, story points are taken as per the Fibonacci

series like 1, 2, 3, 5, 8…………….. . As the number keep on increasing, complexity

would start to increase. Also, other parameter used is customer priority. Higher number

represent higher priority over others user stories. Range for customer priority is 1, 2, 3, 4,

5………..so on.

Table 6.36 Test Cases Story 1

Story # 1 (As an administrator, I want to add items in

the women clothing section so as to have updated

catalog)

Story Points/Customer Priority 3/5

1.1TC0.0 Administrator can enter his login and password in the login screen and can perform

operation in Women section

 TC0.1 Administrator can add items for women clothing with five colors

 TC0.2 Administrator can add items for women clothing with ten brands

 TC0.3 Administrator can add items for women clothing in fifteen different sizes

 TC0.4 Administrator can add items for women clothing with twenty different

price range

 TC0.5 Administrator can add the clothing in exact Dress section (Formal,

Casual, Ethnic, Fashionable)

 TC0.6 Administrator can see the newly added items in tabular form on daily

basis

1.1TC1.0 Administrator can see login page with floral background on home page

 TC1.1 Login text field should be of 30 characters

 TC1.2 Password text should be of 15 alphanumeric characters

 TC1.3 Display of password should be in asterisk character

 TC1.4 Two buttons with text submit and cancel

 TC1.5 Password retrieval option should be there

Table 6.37 Test Cases Story 2

Story # 2 (As an administrator, I want to add items in

the kids clothing section so as to attract kids)

Story Points/Customer Priority ¾

118

1.2TC0.0 Administrator can enter his login and password in the login screen and can perform

operation in Kids Section

 TC0.1 Administrator can add items for kids clothing with five colors

 TC0.2 Administrator can add items for kids clothing with ten brands

 TC0.3 Administrator can add items for kids clothing up to twelve years

 TC0.4 Administrator can add items for kids clothing with twenty different price

range

 TC0.5 Administrator can add the clothing in exact Dress section (Party, Daily,

night wear)

 TC0.6 Administrator can see the newly added items in tabular form on daily

basis

 TC0.7 Administrator can add items in proper gender section(boy or girl)

1.2TC1.0 Administrator can see login page with floral background on home page

 TC1.1 Login text field should be of 30 characters

 TC1.2 Password text should be of 15 alphanumeric characters

 TC1.3 Display of password should be in asterisk character

 TC1.4 Two buttons with text submit and cancel

 TC1.5 Password retrieval option should be there

Table 6.38 Test Cases Story 3

Story # 3 (As an administrator, I want to add items in

the kitchenware section so as to attract hotel

management fellows)

Story Points/Customer Priority 2/2

2.3TC0.0 Administrator can enter his login and password in the login screen and can perform

operation in Kitchenware section

 TC0.1 Administrator can add items for Kitchenware with five colors

 TC0.2 Administrator can add items for Kitchenware with ten brands

 TC0.3 Administrator can add items for Kitchenware in three different sizes

 TC0.4 Administrator can add items for Kitchenware with twenty different price

range

 TC0.5 Administrator can add the kitchenware items in exact Category (Serving,

cooking, Storing, Cutlery)

 TC0.6 Administrator can see the newly added items in tabular form on daily

basis

2.3TC1.0 Administrator can see login page with floral background on home page

 TC1.1 Login text field should be of 30 characters

 TC1.2 Password text should be of 15 alphanumeric characters

 TC1.3 Display of password should be in asterisk character

 TC1.4 Two buttons with text submit and cancel

 TC1.5 Password retrieval option should be there

Table 6.39 Test Cases Story 4

Story # 4 (As an administrator, I want to add items in

the electronic section so as to attract the users)

Story Points/Customer Priority 2/3

2.4TC0.0 Administrator can enter his login and password in the login screen and can perform

operation in electronic section

 TC0.1 Administrator can add items for electronic with three colors

 TC0.2 Administrator can add items for electronic with five brands

 TC0.3 Administrator can add items for electronic in three different sizes

119

 TC0.4 Administrator can add items for electronic with five different price range

 TC0.5 Administrator can add the electronic items in exact Category (Kitchen

Related, Utility, Entertainment)

 TC0.6 Administrator can see the newly added items in tabular form on daily

basis

2.4TC1.0 Administrator can see login page with floral background on home page

 TC1.1 Login text field should be of 30 characters

 TC1.2 Password text should be of 15 alphanumeric characters

 TC1.3 Display of password should be in asterisk character

 TC1.4 Two buttons with text submit and cancel

 TC1.5 Password retrieval option should be there

In this way, further moving on color, brand, price, size and for others many test

cases can be written in user friendly linguistic style. Now, test cases are written for new

requirement (9) when all the stories are developed and delivered in first two sprints.

Table 6.40 Test Cases Story 9

Story # 9 (As an administrator, I want that users should

be able to search items in the specific category so

as to satisfy users)

Story Points/Customer Priority 8/5

3.9TC0.0 User can enter his login details and password in the login screen and can perform

operation of searching in different sections

 TC0.1 User can search items for women with different options in different

categories of dress section

 TC0.2 User can search items for kids with different options in different

categories of dress section for boy/girl

 TC0.3 User can search items for hotel management fellow with different

options in different categories of kitchenware

 TC0.4 User can search items with different options in different categories of

electronic section

3.9TC1.0 User can see login page with green background on home page

 TC1.1 Login text field should be of 30 characters

 TC1.2 Password text should be of 15 alphanumeric characters

 TC1.3 Display of password should be in asterisk character

 TC1.4 Two buttons with text submit and cancel

 TC1.5 Password retrieval option should be there

3.9TC2.0 Administrator can evaluate the satisfaction level

 TC2.1 User can fill the questionnaire for satisfaction evaluation

 TC2.2 Administrator can see the report of satisfaction level in each category

 TC2.3 User feedback can be used to improve the policy of the online store

 TC2.4 Administrator can see the report in graph form

Note: For each test case of the user story positive and negative scenarios are considered

as per the requirement. Negative scenario means what will happen if something

120

unexpected is entered in the text field. For example constraint for age is numeric entry

and user enters alphabets. Then, accordingly warning messages would be displayed.

SLRT is used before the end of sprint 1 and 2 of the current scenario in the form

of unit tests and acceptance tests. Unit testing means suite of white box tests that is the

base of the regression tests and acceptance tests means suite of black box tests that is

needed for checking the definition of done of a story. After every sprint, application is

delivered to the customer by checking the functionality. So, for the defined scenario

stories 1 to 8 are assumed to be operational. Now, in sprint 3, story 9 that needs to be

implemented is dependent on stories 1, 2, 3 & 4 of the existing working system.

Sentence Priority Score (SPS) can be identified for any sentence. The priority of a

sentence over the other sentences is calculated using story point of the story, customer

priority and effect Eu. SPS is calculated for Table 6.40 using equation 4 and is shown in

Table 6.41 for story 9.

 n

 SPS = ∑ SP*CP*Eu

 (4)

 i=1

Table 6.41 Sentence Priority Score Story 9

Story # Sentence Priority Score (SPS)

9 3.9TC0.0

 TC0.1 (3*5*4*11)+ (6*9*17*4)=660+3672=4332

 TC0.2 (3*4*4*11) + (6*9*17*4)=528+3672=4200

 TC0.3 (2*2*4*10) + (6*9*17*4)=160+3672=3832

 TC0.4 (2*3*4*10)+ (6*9*17*4)=240+3672=3912

 3.9TC1.0

 TC1.1 (3*5*4*11) +(3*4*4*11) +(2*2*4*10) +(2*3*4*10)

(1*5*17*4)=660+528+160+240+340=1928

 TC1.2 (3*5*4*11) +(3*4*4*11) +(2*2*4*10) +(2*3*4*10)

(1*5*17*4)=660+528+160+240+340=1928

 TC1.3 (3*5*4*11) +(3*4*4*11) +(2*2*4*10) +(2*3*4*10)

(1*5*17*4)=660+528+160+240+340=1928

 TC1.4 (3*5*4*11) +(3*4*4*11) +(2*2*4*10) +(2*3*4*10)

(1*5*17*4)=660+528+160+240+340=1928

 TC1.5 (3*5*4*11) +(3*4*4*11) +(2*2*4*10) +(2*3*4*10)

(1*5*17*4)=660+528+160+240+340=1928

 3.9TC2.0

 TC2.1 (2*1*17*4)=136

 TC2.2 (2*1*17*4)=136

 TC2.3 (2*1*17*4)=136

 TC2.4 (2*1*17*4)=136

121

Table 6.42 Sentence Priority Score Sorting

TC SPS

TC0.1 4332

TC0.2 4200

TC0.4 3912

TC0.3 3832

TC1.1 1928

TC1.2 1928

TC1.3 1928

TC1.4 1928

TC1.5 1928

TC2.1 136

TC2.2 136

TC2.3 136

TC2.4 136

After sorting results are shown in Table 6.42. TC0.1 has the highest priority as

compared with rest of the test cases, TC0.2 has higher priority as compared with TC0.4

and TC2.4 has lowest priority. This sentence priority score which is based upon number

of nouns and verbs is less time consuming as compared with random ordering of test

cases. The core measure for effectiveness of build is velocity. If velocity measure is

showing tested part is following the definition of done then acceptance criteria is met.

Another metric is defect removal efficiency.

Defect Removal Efficiency is one of testing metric in Agile which says the

number of defects that are removed per time unit (hours/days/weeks).It indicates the

efficiency of defect removal methods, as well as indirect measurement of the quality of

the product. It is computed by dividing the effort required for defect detection, defect

resolution time and retesting time by the number of defects. This is calculated per test

type, during and across test phases. Here effort is assumed to be time.

DRE = (Time (Defect Detection + Defect Resolution + Defect Retesting Time))/No. of

Defects

Here, Time calculation is dependent on story points and customer priority and

unit of time is assumed to be hours.

122

6.5.3 Implementation

In broad sense the proposed TCP is shown in Figure 6.12. In section 6.5.2 “A

Linguistic Approach for Test Case Prioritization” was performed on the basis of sentence

priority score. In this section some of the steps of the prioritization using Linguistic

parameters have been implemented. The proposed TCP technique is started by finding

noun and verb of the ready story of new requirement and then performing mapping with

the existing user stories noun and verb Tables. Finding of noun and verb is performed by

making use of inbuilt formulae of Excel like:

 IF

 ISNUMBER

 SEARCH

 SUM

 COUNT

For reference, most risky user story 10, has been considered as the new user story

for performing test case prioritization and rest of the user stories 1-9 are the existing user

stories which are delivered to the C after proper quality check. User story 10 has the

following elaborated requirements based on the confirming points (ready story) which are

output of communication among team members and CR. One important point is that

framing ready story is mandatory step for getting good hold on the client’s perspective

for effective requirement development. Here, CR inputs are of great importance.

Following are the confirming points for user story 10.

Figure 6.12 “Sequential Approach”

123

 Petitioner has access to active patents in .pdf format.

 Petitioner has access to revoked patents’ case history in .pdf

format.

 Petitioner has option of saving patent subsections as per the space

available on her system.

 Petitioner has access to pending published applications in .pdf

format.

 In the database various types of legal status are searched based on

the unique publication number, application number or patent number or petition

number.

In implementing test case prioritization, foremost step is to find noun and verb in

these confirming points. Confirming points and ready story are used interchangeably. The

ready story has following mixed verbs:

 Access

 Save

 Search

In the ready story 10, counTable and common nouns are present. These nouns

have less significance as compared with uncounTable nouns. The uncounTable or mass

nouns make tasks little bit tricky. Some of the nouns are as follows:

 Patent---------------CounTable

 Subsection---------CounTable

 Application -------Common Noun

 Database-----------Common Noun

 Publication---------Common Noun

 Petition-------------Common Noun

 Legal----------------Common Noun

If these nouns or verbs are to be found in the existing user stories 1-9 then

following excel formula can be used:

 IF(ISNUMBER(SEARCH(“Patent”, Cell number)), “YES”,

“NO”)...............(1)

124

Snapshot for counting noun using Excel has been shown below in Figure 15. In

this case, ready story’s nouns such as Patent, Subsection etc. are found in existing user

stories 1-9. Using same formula, nouns may be searched in the existing ready story’s 1-9

if time permits.

Similarly, verb search may be performed for user story or ready story.

Figure 6.13 Noun Count

 COUNTIF(C2:I11,"YES")...

(2)

Further, to count, total number of “YES” for nouns of Figure 6.13, Countif

function may be used (See formula F2). This function returns 3, 4, 1, 1, 1, 1, 1, 2 and 1,

as number of nouns in respect of user stories 1-9. Similarly, total number of verbs is

calculated. Screen shot for the same is shown in Figure 6.14. The countif function returns

1, 1, 1, 1, 1, 1, 1, 1, 0, as number of verbs in respect of user stories 1-9. Using

multiplication operator on these count values of noun and verb, effect (see Figure 6.15) is

calculated for new ready story in respect of user stories 1-9.

125

By reviewing, effect values, it is clear that user story’s 9 has effect value zero. So,

user stories 1-8 as per sorted effect values are:

2 > 1> 8> 3, 4, 5, 6, 7

User story 2 with effect value 4 is the user story that is most adversely affected by

the change introduced by C in terms of user story 10. Similarly, user stories 3, 4, 5, 6, 7

with effect value of 1 are of equal importance and are least affected by the change

introduced by C in terms of user story 10. Accordingly, SPS may be calculated.

Figure 6.14 Verb Count

Figure 6.15 Effect

126

Highest value in SPS column represents highest priority of the corresponding test

case. This SPS is less time consuming as compared with random/no ordering of test

cases. The core measure for effectiveness of build is velocity. If velocity measure is

showing that the tested part is following the definition of done then acceptance criteria is

met. Another metric is (average percentage of fault detection) APFD [69]. APFD can be

calculated as follows:

 APFD=1-(Tf1+Tf2+….+Tfm)/mn}+(1/2n)………………F4

where, n be the no. of test cases and m be the no. of faults.

(Tf1,….,Tfm) are the position of first test T that exposes the fault.

Table 6.43 TCP Ordering

Faults Test Cases

TC-

2.5

TC-

2.1

TC-

2.2

TC-

2.3

TC-

2.4

TC-

2.6

TC-

4.1

TC-

4.2

TC-

4.3

TC-

4.4

TC-

4.5

TC-

4.6

F1 * *

F2 * *

F3 * * *

F4 * * * *

F5 * *

F6 * * * *

F7 * *

F8 * *

F9 *

F10 * *

Table 6.43 is a Table showing occurrence of faults by running test cases. For

TCP, APFD comes out to be 83.3 %. Using no ordering method (See Table 6.44), APFD

comes out to be 75.8%. Thus the prioritized test cases yield better fault detection than the

non – prioritized test cases. A graph has been shown in Figure 6.16 to show the exact

comparison between TCP and No ordering for test cases.

APFD = 1-{(1+3+2+1+2+1+5+2+7+1)/10*12+1/2*12

 = 1-25/120+1/24

 = 0.833

APFD = 1-{(5+2+1+3+1+5+4+1+7+5)/10*12+1/2*12

 = 1-34/120+1/24

 = 0.758

127

6.6 CONCLUSION

In this chapter, TCP techniques have been proposed for Agile environment. The first

technique is based on calculated risk measure of the user story. Further, this risk measure

is based on story point, implementation dependency and volatility rate of the links present

in the user story graph. The second proposed technique is based on the relationship

among objects of the primary and secondary parties. Further, a test pattern has been

proposed for similar kind of problems. The last technique is based on the presence of

noun and verbs present in the user stories. Further, on that basis, a sentence priority score

is calculated for each test case using linguistic parameters and test cases can be managed.

The effectiveness of TCP technique has been proved using APFD metric.

Table 6.44 “No Ordering”

Faults Test Cases

TC-

2.1

TC-

2.2

TC-

2.3

TC-

2.4

TC-

2.5

TC-

2.6

TC-

4.1

TC-

4.2

TC-

4.3

TC-

4.4

TC-

4.5

TC-

4.6

F1 * *

F2 * *

F3 * * *

F4 * * * *

F5 * *

F6 * * * *

F7 * *

F8 * *

F9 *

F10 * *

128

Figure 6.16 Comparison

0.72

0.74

0.76

0.78

0.8

0.82

0.84

TCP No Ordering

 A
P

F
D

 D
A

T
A

ORDERING APPROACH

129

CHAPTER VII

CONCLUSION & FUTURE WORK

In this work, Agile software development has been explored in the testing

direction by discussing Agile testing life cycle for all stakeholders. More specifically,

interaction of a tester with other stakeholders along with testing activities has been

explained in the proposed Agile testing life cycle, which revolves around regression

testing. Moreover, quadrant has been defined for regression testing which covers all

quadrants. Further, for Scrum methodology, a Sprint flow diagram has been discussed by

mentioning all testing activities before the sprint, within the sprint and post sprint.

Further, a distributed framework has been proposed for Agile software development

environment. More specifically, pair programming and refactoring like practices has been

discussed for handling different challenges of distributed environment. The pair members

for a pair can be identified using proposed buddy identifier approach.

Furthermore, a RTS technique has been proposed for selecting optimized user

stories so as to utilize resources to its fullest. It makes use of two important parameters

namely average path length and average path value. Optimized results are obtained by

considering APL and APV values. Validity of the technique is done by using the velocity

metric which is measured for a sprint. Velocity is a metric that predicts how much work

an Agile software development team can successfully complete within a two-week sprint.

With this technique, optimized selection of user story is done in less time resulting in

more productivity in terms of satisfaction and quality.

Finally, TCP techniques have been proposed for Agile environment. The first

technique is based on calculated risk measure of the user story. Further, this risk measure

is based on story point, implementation dependency and volatility rate of the links present

in the user story graph. The second proposed technique is based on the relationship

among objects of the primary and secondary parties. Further, a test pattern has been

proposed for similar kind of problems. The last technique is based on the presence of

130

noun and verbs present in the user stories. Further, on that basis, a sentence priority score

is calculated for each test case using linguistic parameters and test cases can be managed.

The effectiveness of TCP technique has been proved using APFD metric.

The proposed Agile testing techniques comprising regression test case prioritization

based on linguistic parameters such as noun and verb may be implemented by

considering other parameters such as adjectives, adverbs, accent and many more. In the

present work, excel and adobe captivate tool were used to implement proposed

prioritization techniques of the distributed environment. Furthermore, macros may be

implemented for same functionality using VB script. Also, the proposed regression test

selection approach takes into consideration weights of the undirected graph in a module

and optimal nature of this proposed method removes other risks of the development of

the user story. The new method can be developed which is based on directed graph for

user stories.

The proposed Agile model takes into account interest of all stakeholders. For this

proposed model, automation central can be created which may link all stakeholders for all

kinds of communication during Agile software development.

131

REFERENCES

[1]. Abrahams Faried, “Method And Apparatus For Enabling Agile Development Of

Services In Cloud Computing And Traditional Environments”, Pubication No.

US20140282380.

[2]. Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J., “New Directions on

Agile Methods : A Comparative Analysis”, In Proceeding of 25th International

conference on Software engineering 2003.

[3]. Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J., “Agile Software

Methods review and Analysis”, Espoo, Finland: Technical Research Centre of

Finland, VTT publication,

http://www.inf.vtt.fi/pdf/publications/2002/478.pdf.2002

[4]. Adipat Larprattanakul and Taratip Suwannasart, “An approach for regression test

selection using object dependency graph,” 978-0-7695-4988-0/13 © 2013 IEEE

DOI 10.1109/INCoS.2013.115.

[5]. “Agile Alliance. Principles Behind the Agile

Manifesto”,www.Agilemanifesto.org/principles.html,2001.

[6]. Amit Juyal, Umesh Kumar Tiwari, Lata Nautiyal, Shashidhar G. Koolagudi,

“Agile Plus Comprehensive model for Software Development”, In International

Journal Computer Technology& Applications, Volume 3 (4), 1378-1383

[7]. Anita, Naresh Chauhan, “A Framework for Quality Improvement in Distributed

Agile Environment”, IEEE International Conference On Research And

Development Prospects On Engineering And Technology, March 2013, E. G. S.

Pillay Engineering College, Tamilnadu, India.

[8]. Anita, Naresh Chauhan, “A Linguistic approach for TCP in an Agile

Environment”, 13
th

 Annual International Software Testing Conference (4
th

-

5
th

 Dec 2013), Crossing The Chasm: From Assurance To Confirmation,

Bangalore, India.

[9]. Anita, Naresh Chauhan, “A Pattern Based Approach To Prioritize Test Cases For

User Stories In An Agile Environment”, International Journal of Advance

Foundation and Research in Computer (IJAFRC), Volume 1, Issue 7, July – 2014,

pp. 185-194.

http://www.inf.vtt.fi/pdf/publications/2002/478.pdf.2002

132

[10]. Anita, Naresh Chauhan, “A Regression Test Selection Technique by Optimizing

User Stories in an Agile Environment”, 4
th

 IEEE International Advanced

Computing Conference, IACC 2014 (21
st
-22

nd
 Feb 2014), in ITM University,

Gurgaon, India.

[11]. Anita, Naresh Chauhan, “A Risk Based Story Prioritization Technique In An

Agile Environment”, International Journal of Advance Foundation and Research

in Computer (IJAFRC), Volume 1, Issue 7, July – 2014, pp. 16-25.

[12]. Anita, Naresh Chauhan, “A Simplest Agile Life Cycle in an Agile Environment”,

CSI Sponsored 7
th

 International Conference on Software Engineering CONSEG -

2013 (15
th

-17
th

 Nov 2013), Humanizing Software Engineering, Pune, India.

[13]. Anita, Naresh Chauhan, “Agile Learning Model”, 2nd IEEE International

Conference on MOOCs, Innovation and Technology in Education (19-20th

December 2014), Patiala, Punjab, India.

[14]. Anita, Naresh Chauhan, “An Object Oriented Design Approach For Modification

of Rotten Code Using Regression Testing & Refactoring”, “An Object Oriented

Design Approach For Modification of Rotten Code Using Regression Testing &

Refactoring” Volume 4, Number 7, 2014, pp, 681-686.

[15]. Anita, Naresh Chauhan, “State of the art search-Agile Software development in

global market”, International Journal of Advances in Science, Engineering and

Technology (IJASEAT), Institute of Research & Journals, Volume-2, Issue-2,

April 2014.

[16]. Anita, Naresh Chauhan, “Testing in an Agile Environment: A Project”,

International Conference on Next Generation Communication and Computing

Systems (ICNGC2S-10), December 25-26, 2010, Chandigarh, India

[17]. Aoyamma, M., “Agile Software Process and its Experiences”, In IEEE

Transaction 1999.

[18]. Astels, D., “Test-Driven Development: A Practical Guide”, Prentice Hall: Upper

Saddle River, NJ, USA, 2003.

[19]. Balaji Sundramurth, Ronald S. Cordova, M. Sundara Rajan, “Traditional Vs Agile

Methodology: An Analysis on Challenges faced in Testing Perspective”, Proc. of

133

the Intl. Conf. on Advances In Computing, Electronics and Electrical

Technology-CEET 2014.

[20]. Beck, K., “Test Driven Development: By Example”, Pearson: New York, NY,

USA, 2003.

[21]. Beck, Kent., “Extreme Programming Explained: Embrace change”, Addison

Wesley, 2000.

[22]. Bhalerao, S., and Ingle, M., “Formalizing Communication Channel in Agile

Methods”, In Proceedings of International Conference on Trends in Information

Science and Computing (TISC07), Dec. 2007.

[23]. Bhalerao, S., and Ingle, M., ”Mapping SDLC phase with Various Agile

Methods”, In Proceedings of International conference on Advances in Computer

Vision and information Technology, Nov. Aurangabad, pp. 318-325.

[24]. Bhalerao, S., D. Puntambekar and Ingle, M.,”Generalizing Agile Software

Development Life Cycle”, In International Journal on Computer Science and

Engineering Vol.1(3), 2009, 222-226.

[25]. Cao L. and Balasubramanium R., “Agile Software Development: Ad-hoc

Practices or Sound Principles ?”, IEEE ITPRO, March- April 2007, pp. 41-46.

[26]. Cockburn, A., “Crystal Clear: A Human-Powered Methodology for Small

Teams”, Addison-Wesley, 2004.

[27]. Cockburn, A., “Agile Software Development”, Pearson Education, Asia, Low

Price Edition, 2007.

[28]. Cockburn, A., and Highsmith, J., “Agile Software Development: The People

Factor”, In Computer, Nov. 2001, pp. 131-133.

[29]. Coelho Evita and Basu Anirban, “Effort Estimation in Agile Software

Development using Story Points”, International Journal of Applied Information

Systems (IJAIS)-ISSN: 2249-0868, Volume 3-No. 7, August 2012

[30]. Cognizant 20-20 insights, https://www.cognizant.com/InsightsWhitepapers/The-

Case-for-Agile-Testing-codex891.pdf, June 2014.

[31]. Cohn, M. “User stories applied: For Agile software development,” Boston, MA:

Addison-Wesley, 2004.

https://www.cognizant.com/InsightsWhitepapers/The-Case-for-Agile-Testing-codex891.pdf
https://www.cognizant.com/InsightsWhitepapers/The-Case-for-Agile-Testing-codex891.pdf

134

[32]. Cohn, M., and Ford, D., “Introducing an Agile Process to an Organization”, In

IEEE Computer Society 2003, pp.74-78.

[33]. Cohn, Mike, “Agile Estimating and planning”, Prentice Hall, 2005.

[34]. Crispin, L., & House, T., “Testing Extreme Programming” Addison-Wesley,

2002.

[35]. De Souza, Ken, “A Tester in Developer’s Clothes”, blog,

http://kendesouza.blogspot.com.

[36]. Dhalait Shamim Ahmad Dadamir and TCS Limited, “Agile Unit and regression

Testing Framework for domain specific languages”, Publication number

US20130159963.

[37]. Dingsøyr, T., Dybå, T., and Abrahamsson, P., ”A Preliminary Roadmap for

Empirical Research on Agile Software Development”, In Proceedings of Agile

Conference 2008

[38]. E. Gamma, R. Helm, R. Johnson et al., “Design Patterns: Elements of Reusable

Object-Oriented Software”. Addison- Wesley.

[39]. Elizabeth, K., Dwight, A. et al., “A development environment for distributed

synchronous collaborative programming”, In Proceedings of the 13th annual

SIGCSE Conference on Innovation and Technology in Computer Science

Education, 2008, pp.158-162

[40]. Emelie Engstrom, Per Runeson and Greger Wikstrand, “An empirical evaluation

of Regression testing based on fix cache recommendations,” 978-0-7695-3990-

4/10 © 2010 IEEE DOI 10.1109/ICST.2010.40.

[41]. Fagerholm, F., Ikonen, M., Kettunen, P., Münch, J., Roto,V., Abrahamsson, P.,

“Performance Alignment Work: How Software Developers Experience the

Continuous Adaptation of Team Performance in Lean and Agile Environments”,

Information and Software Technology, vol. 64, pp. 132–147.Elsevier, 2015.

[42]. Fagerholm, F., Pagels, M., “Examining the Structure of Lean and Agile Values

Among Software Developers”, In Proceedings of the 15th International

Conference on Agile Software Development (XP 2014): Agile Processes in

Software Engineering and Extreme Programming. Lecture Notes in Business

http://kendesouza.blogspot.com/

135

Information Processing, vol. 179, pp. 218–233. Springer International Publishing,

2014.

[43]. Garg Swati, “Training Technique for Learning Agile Methodology”, Publication

number US20080305460.

[44]. Gerard Meszaros, “Agile regression testing using record and play,” OOPSLA

2003, Oct 26-30, 2003, Anaheim, California. ACM 1-58113-751-6/03/0010

[45]. Graziotin, D., Wang, X., and Abrahamsson, P., “Understanding the Affect of

Developers: Theoretical Background and Guidelines for Psychoempirical

Software Engineering” In Proceedings of the 7th International Workshop on

Social Software Engineering, SSE 2015, pages 25–32, NewYork, NY, USA.

ACM.

[46]. Hendrickson, E., “Agility for Testers”, Pacific Northwest Software Quality

Conference 2004.

[47]. http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

[48]. http://humanresources.about.com/od/interpersonalcommunicatio1/qt/nonverbal-

communication-in-the-workplace.htm

[49]. http://www.adobe.com/support/captivate/gettingstarted.html

[50]. Iacovelli A. and Souveyer C., “Framework for Agile Method Classification”,

Proceedings of Model Driven Information System Driven Engineering-

Enterprise, User and System Model (MoDISE –EUS) 2008, pp. 91-10

[51]. Inoue Tomomi, “Information Processor, Method, And Program For Determining

Priority Of Test Case To Be Executed In Regression Test”, 2008129661.

[52]. Jennifier Dorette, “Comparing Agile XP and Waterfall Software Development

Processes in two Start-up Companies”, Master of Science Thesis in the

Programme Software Engineering and Technology, Chalmers University of

Technology Department of Computer Science and Engineering Göteborg,

Sweden, November 2011.

[53]. K. Beck, W. Cunningham, "Using Pattern Languages for Object-Oriented

Program". OOPSLA '87 Retrieved 2006- 05-26.

[54]. Kniberg, Henrik, “Scrum and XP from the trenches”, Lulu.com,2007

[55]. Kohl, J., “Pair Testing. Better Software”, Jan 2004.

http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
http://humanresources.about.com/od/interpersonalcommunicatio1/qt/nonverbal-communication-in-the-workplace.htm
http://humanresources.about.com/od/interpersonalcommunicatio1/qt/nonverbal-communication-in-the-workplace.htm
http://www.adobe.com/support/captivate/gettingstarted.html

136

[56]. L. Aversano, L. Cerulo, M.D. Penta, “The relationship between design patterns

defects and crosscutting and cross cutting concern scattering degree”, Software,

IET, vol.3, no.5, pp.395-409, October 2009.

[57]. L. Crispin and J. Gregory, “Agile Testing: A Practical Guide for Testers and

Agile Teams”, ISBN-13: 978-0321534460, Edition 1.

[58]. Labuschagne, A. and Holmes, R., “Do Onboarding Programs Work?, In

Proceedings of the 12th Working Conference on Mining Software Repositories,

Florence, Italy. IEEE.

[59]. Larman, C.; Basili, V., “Iterative and incremental developments”, A brief history.

Computer 2003, 36, 47–56.

[60]. Lenberg, P., Feldt, R., and Wallgren, L. G., “Behavioral software engineering: A

definition and systematic literature review”, Journal of Systems and Software,

107:15–37, 2015.

[61]. Lenberg, P., Feldt, R., and Wallgren, L.-G., “Towards a Behavioral Software

Engineering. In Proceedings of the 7th International Workshop on Cooperative

and Human Aspects of Software Engineering”, CHASE 2014, pages 48–55, New

York, NY, USA. ACM.

[62]. M.Paasivaara, S. Durasiewicz, C. Lassenius, “Using Scrum in Distributed Agile

Development: A Multiple Case Study, International Conference on Global

Software Engineering”, pp.195-204, 2009

[63]. Maria Sagheer, Tehreem Zafar, Mehreen Sirshar, “A Framework For Software

Quality Assurance Using Agile Methodology”, International Journal Of Scientific

& Technology Research Volume 4, Issue 02, February 2015.

[64]. Microsoft Corporation, “System and method to facilitate manageable and Agile

deployment of services in accordance with various topologies”, Patent number

US7636782, Year 2009.

[65]. N. Ganesh and S. Thangasamy, “New Agile Testing modes”, Information

Technology Journal 11 (6): 707-712, 2012.

[66]. Orit Hazzan, Yael Dubinsky, “Agile Software Engineering”, Springer

International Edition, 2011.

137

[67]. Pettichord, B., “Agile Testing Challenges”, Pacific Northwest Software Quality

Conference 2004.

[68]. R. Ferenc, A. Beszedes, L. Fulop et at., “Design Pattern Mining Enhanced by

Machine Learning”, 25-30 September 2005, Budapest, Hungary.

[69]. R. Pradeepa and K. VimalaDevi, “Effectiveness of Test case Prioritization using

APFD Metric”, published in International Conference on Research Trends in

Computer Technologies (ICRTCT - 2013) Proceedings published in International

Journal of Computer Applications® (IJCA) (0975 – 8887).

[70]. Rajendra Ganpatrao Sabale, A.R. Dani, “Comparative Study of Prototype Model

for Software Engineering With System Development Life Cycle”, IOSR Journal

of Engineering (IOSRJEN) ISSN: 2250-3021, www.iosrjen.org. Volume 2, Issue

7,July 2012, pp. 21-24.

[71]. Rajlich, “Agile Software Development-Software change”, Agile 2014”

1916_Software_Change_Agile2014.pdf.

[72]. Rashmi Popli, Anita, Naresh Chauhan ,”A Mapping Model for transforming

Traditional Software Development Methods to Agile Methodology”, International

Journal of Software Engineering and Applications (IJSEA) Vol 4, No. 4, July

2013,pp. 53-64.

[73]. Rashmi Popli, Anita, Naresh Chauhan, “Mapping of Traditional Software

Development Methods to Agile Methodology” The Third International

Conference on Computer Science and Information Technology (CCSIT- 2013),

February 18-20 , 2013, Bangalore, India.

[74]. S.Balaji, Dr.M.Sundararajan Murugaiyan, “Waterfall vs V-Model vs Agile : A

Comparative Study on SDLC”, International Journal of Information Technology

and Business Management,Vol.2 No. 1, JITBM, ISSN 2304-0777, 2012.

[75]. Schwaber, K. & Beedle, M., “Agile Software Development with SCRUM”.

Prentice Hall, 2001.

[76]. Shelly, “Comparative Analysis of Different Agile Methodologies”, International

Journal of Computer Science and Information Technology Research ISSN 2348-

120X (online) Vol. 3, Issue 1, pp: (199-203), Month: January - March 2015.

138

[77]. Shikha Maheshwari,Dinesh Ch. Jain, “A Comparative Analysis of Different types

of Models in Software Development Life Cycle”, International Journal of

Advanced Research in Computer Science and Software Engineering ,Volume 2,

Issue 5, ISSN: 2277 128X ,May 2012

[78]. Shore, James and Shane Warden, “The art of Agile Development”, O’Reilly

Media, 2007.

[79]. Singh Yogesh and Aggarwal K.K., “Software Engineering”, New Age

International Publishers, Revised second edition 2005

[80]. Song Yang, David Knoke, “Optimal connections: strength and distance in valued

graphs,” www.elsevier.com/locate/socnet,2001

[81]. Ståle Amland, "Risk Based Testing of a Large Financial Application",

Proceedings of the 14th International Conference and Exposition on TESTING

Computer Software, June 16-19, 1997, Washington, D.C., USA.

[82]. Sukkarieh, J.Z.; Kamal, J., “Towards Agile and Test-Driven Development in NLP

Applications”, In Proceedings of the Workshop on Software Engineering, Testing,

and Quality Assurance for Natural Language Processing, Boulder, CO, USA, 5

June 2009; pp. 42–44.

[83]. “Timeboxing DSDM Consortium, DSDM Agile project Framework”,

www.dsdm.org September 2013

[84]. Todd L. Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter and Gregg

Rothermel, “An empirical study of Regression test Selection Techniques”, 0-

8186-8368-6198, 1998 IEEE.

[85]. VersionOne "8th annual state of agile survey",

http://stateofagile.versionone.com/, 2014.

139

BRIEF PROFILE OF THE RESEARCH SCHOLAR

She has done M.Tech (CE) from Maharishi Dayanand University in year 2009,

B.Tech (CSE) from Maharishi Dayanand University in the year 2004. She has 4 years of

industry experience and 7 years of teaching experience. She is a lifetime member of

Computer Society of India and Agile Software Community of India. Her research area

includes Software Engineering, Software Testing, Software Quality and Agile software

development. She has presented her papers in International Conferences and National

conferences. Her papers are published in various International Conferences and

International Journals. She has knowledge in the field of Intellectual Property Rights such

as patent, copyright etc.

140

LIST OF PUBLICATIONS

List of Published Paper (International Journal)

S.No

.

Title Name of Journal where

Published

No. Volu

me &

Issue

Year Pages

1. “A Pattern Based

Approach To

Prioritize Test Cases

For User Stories In

An Agile

Environment”

Listed in Thomson Reuters

Researcher ID

Indexing:

 Google Scholar

 INDEX

COPERNICUS

 RESEARCH

BIBLE

 DRJI

 iiS

 MENDELEY

 ScienceCentral.com

 Bing

 .docstoc

 Slideshare

 Scribd

 CiteSeer

 Knimbus

 INNOSPACE

 Citeulike

 Advanced Sciences

Index

 Journalindex.net

 Q.Sensei

 Electronic Journals

Library

 CiteFactor

 Scientific Indexing

services

International Journal of

Advance Foundation and

Research in Computer

(IJAFRC)

Directory of Science Score-

22.86

Scientific Journal Impact

Factor 2012 : 3.599

ISRA: Journal Impact

Factor (JIF) - 1.317

ISSN 2348

- 4853

Volum

e 1,

Issue 5

May -

2014

185-

194

141

 Open Academic

Journals Index

 DIIF

 Issuu

 TechRepublic

 Indian Citation

index

 Academia.edu

Link: http://ijafrc.org/

2. “A Risk Based Story

Prioritization Technique In

An Agile Environment”

Listed in Thomson Reuters

Researcher ID

Indexing:

 Google Scholar

 INDEX

COPERNICUS

 RESEARCH

BIBLE

 DRJI

 iiS

 MENDELEY

 ScienceCentral.com

 Bing

 .docst c

 Slideshare

 Scribd

 CiteSeer

 Knimbus

 INNOSPACE

 Citeulike

 Advanced Sciences

Index

 Journalindex.net

 Q.Sensei

 Electronic Journals

Library

 CiteFactor

 Scientific Indexing

services

International Journal of

Advance Foundation and

Research in Computer

(IJAFRC)

Directory of Science Score-

22.86

Scientific Journal Impact

Factor 2012 : 3.599

ISRA: Journal Impact

Factor (JIF) - 1.317

ISSN 2348

- 4853

Volum

e 1,

Issue 7

July -

2014

16-25

142

 Open Academic

Journals Index

 DIIF

 Issuu

 TechRepublic

 Indian Citation

index

 Academia.edu

Link: http://ijafrc.org/

3. “A Mapping Model for

Transforming Traditional

Software Development

Methods to Agile

Methodology”

Abstracting & Indexing:

 ProQuest

 Scirus

 EBSCO

 Google Scholar

 CSEB

 Scribd

 DOAJ

 getCITED

 pubget

 CiteSeer

 .docst c

 Pub zone

 ULRICHSWEB

 PKP

 WorldCat

 Cnki.net

Link:
http://www.airccse.org/journa

l/ijsea/ijsea

The International journal of

Software Engineering &

Applications (IJSEA)

Academy & Industry research

Collaboration center (AIRCC)

ISSN :

0976 -

2221

e-ISSN :

0975 -

9018

doi :10.

5121/ijsea

 Vol.4,

No.4,

July

2013

53-64

4. “An Object Oriented Design

Approach For Modification

of Rotten Code Using

Regression Testing &

Refactoring”

International Journal of

Information & Computation

Technology. International

Research Publication House

ISSN

0974-2239

Volum

e 4,

Numbe

r 7

2014 681-

686

5. “State of the art search-Agile

Software development in

global market”

International Journal of

Advances in Science,

Engineering and Technology

ISS

N
: 23

21

Volum

e-

April

2014

143

Indexing:

 Directory of Science

 Google Scholar

 DOAJ

 JOUR Informatics

 BASE

 OAJI

 DRJI

Link:
http://www.iraj.in/journal/I

JASEAT/

(IJASEAT)

Institute of Research &

Journals

JIFACTOR: 3.15

(Pri

nt)

–

89

91

ISS

N

(On

line

)

:

23

21

–

90

09

2,Issue

-2

144

List of Published Paper (International Conference)

S.No. Title of the Paper along with

volume, Issue No., Year of

Publication

Publisher Refere

ed or

Non-

Refere

ed

Whether

you paid

any

money or

not for

publicati

on

Remar

ks

1 “A Regression Test Selection

Technique by Optimizing User

Stories in an Agile

Environment”

4
th
 IEEE International Advanced

Computing Conference, IACC

2014(21
st
-22

nd
 Feb 2014), in

ITM University, Gurgaon, India.

IEEE Explorer Yes Yes

2 “A Linguistic approach for TCP

in an Agile Environment”

13
th
 Annual International

Software Testing Conference

(4
th
-5

th
 Dec 2013), Crossing The

Chasm: From Assurance To

Confirmation, Bangalore, India

QAI

http://www.qaiglobals

ervices.com/conferenc

e/stc2013/PDFs/ANIT

A.pdf

Yes No

3 “A Framework for Quality

Improvement in Distributed

Agile Environment”

IEEE International Conference

On Research And Development

Prospects On Engineering And

Technology (ICRDPET

-

2013), March 29-30, 2013, Vol.

4

E. G. S. Pillay

Engineering College ,

Tamilnadu, India

Yes Yes

4 “A Simplest Agile Life Cycle in

an Agile Environment”

CSI Sponsored 7
th
 International

Conference on Software

Engineering CONSEG -2013

(15
th
-17

th
 Nov 2013),

Humanizing Software

Engineering, Pune,

India.

Computer Society of

India, 2013

ISBN 978-1-63041-

578-5

http://www.conseg.in/

pune2013/proceedings.

html

Yes Yes

http://www.qaiglobalservices.com/conference/stc2013/PDFs/ANITA.pdf
http://www.qaiglobalservices.com/conference/stc2013/PDFs/ANITA.pdf
http://www.qaiglobalservices.com/conference/stc2013/PDFs/ANITA.pdf
http://www.qaiglobalservices.com/conference/stc2013/PDFs/ANITA.pdf
http://www.conseg.in/pune2013/proceedings.html
http://www.conseg.in/pune2013/proceedings.html
http://www.conseg.in/pune2013/proceedings.html

145

5 “Testing in an Agile

Environment: A Project”

International Conference on

Next Generation

Communication and Computing

Systems (ICNGC2S-10),

December 25-26, 2010,

Chandigarh, India

Institution of

Engineers,

Technocrats and

Academicians

Network (IETAN)

Conference

Proceedings

 - Yes

6 “Mapping of Traditional

Software Development Methods

to Agile Methodology”

The Third International

Conference on Computer

Science and Information

Technology (CCSIT- 2013),

February 18-20 , 2013,

Bangalore, India

Academy & Industry

research Collaboration

center (AIRCC)

http://airccse.org/curre

ntissue14.html

 - Yes

7 “Agile Learning Model”

2nd IEEE International

Conference on MOOCs,

Innovation and Technology in

Education (19-20th December

2014), Patiala, Punjab

IEEE Explorer - Yes

http://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fairccse%2Eorg%2Fcurrentissue14%2Ehtml&isImage=0&BlockImage=0&rediffng=0
http://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fairccse%2Eorg%2Fcurrentissue14%2Ehtml&isImage=0&BlockImage=0&rediffng=0

