209508

Dec., 2018
 B.Tech. (ME) Vth Semester
 MATHS-III
 (GA-502C)

Time : 3 Hours]
[Max. Marks : 75

Instructions :
(i) It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
(ii) Answer any four questions from Part-B in detail.
(iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Define Dirichlet's Conditions.
(b) State and Prove Change of scale property of Fourier Transform.
(c) If $\sin (\mathrm{A}+i \mathrm{~B})=x+i y$, prove that

$$
\begin{equation*}
x^{2} \operatorname{cosec}^{2} \mathrm{~A}-y^{2} \sec ^{2} \mathrm{~A}=1 . \tag{1.5}
\end{equation*}
$$

(d) Show that the function $e^{x}(\cos y+i \sin y)$ is an analytic function. Also find its derivative.
(e) Evaluate $\int_{c}\left(12 z^{2}-4 i z\right) d z$ along the curve C joining the points $(1,1)$ and $(2,3)$.
(f) A card is drawn from an ordinary pack and a gambler bets that it is spade or an ace. What are the odds against his winning the bet.
(g) If A and B are two events such that $P(A)=1 / 4$, $P(B)=1 / 3$ and $P(A \cup B)=1 / 2$. Show that A and B are independent events.
(h) Six coins are tossed 6400 times. Using the Fuson Distribution determine the approximate probability of getting six heads x times.
(i) Find a half-range cosine series for the function $f(x)=x^{2}$ in the range $0 \leq \mathrm{x} \leq \pi$.
(j) Find the Fourier Sine transform of $f(x)=e^{-a x}, a>0$.

PART-B

2. (a) An Alternating current after passing through rectifier has the form

$$
i=\left\{\begin{array}{ll}
I_{0} \sin x & \text { for } 0 \leq x \leq \pi \tag{9}\\
0 & \text { for } \pi \leq x \leq 2 \pi
\end{array}\right\}
$$

where I_{0} is the maximum current and the period is 2π. Express i as a fourier series.
(b) Find the fourier series expansion of $f(x)=1+|x|$ defined in $-3<x<3$.
3. (a) Find the Fourier cosine Transform of $f(x)=\frac{1}{1+x^{2}}$. Hence derive fourier sine transform of $\phi(x)=\frac{x}{1+x^{2}}$.
(b) Using finite fourier transform, solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, subject to the conditions:
(i) $u_{x}(0, t)=u_{x}(6, t)=0$, for $0<x<6, t>0$.
(ii) $u(x, 0)=x(6-x)$, for $0<x<6$.
4. (a) If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of $z=x+i y$, find $f(z)$ in terms of z by Milne Thomson Method.
(b) Prove that $u=x^{2}-y^{2}$ and $v=\frac{y}{x^{2}+y^{2}}$ are harmonic functions of (x, y), but are not harmonic conjugates.

5 (a) Evaluate $\int_{c} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ where c is the circle $|z|=10$.
(b) Expand $f(z)$ as Taylor's or Laurent's series expansion.

$$
\begin{align*}
& f(z)=\frac{z^{2}-1}{(z+2)(z+3)} \text { when (i) }|z|<2 \text { (ii) } 2<|z|<3 \\
& \text { (iii) }|z|>3 \tag{7}
\end{align*}
$$

6. (a) Two-Thirds of the students in a class are boys and the rest are girls. It is known that the probability of a girl getting a first class is 0.25 and that of a boy getting a first class is 0.28 . A student is selected at random and is found to get the first class. What is the probability that the student is a boy?
(b) A die is thrown three times. Events A and B are defeed as below :
A : 4 appears on third throw
B: 6 and 5 appears respectively on first two throws.
Find the probability of A given that B has already occurred.
7. (a) Let X be a random variable defined by the density

$$
\text { function } f(x)=\left\{\begin{array}{ll}
3 x^{2}, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right\} \text {. Find } \mathrm{E}(\mathrm{X})
$$

$$
\begin{equation*}
E(3 X-2), E\left(X^{2}\right) \tag{8}
\end{equation*}
$$

(b) Fit a Binomial Distribution to the following frequency distribution :

x	0	1	2	3	4	5	4
f	13	25	52	58	32	16	4

