80781

B. Tech 8th Semester Examination DIGITAL SIGNAL PROCESSING Paper: E-402

Time : 3 Hours

[Max. Marks : 60

Instructions :

(i) Part-I is compulsory and all questions carry equal marks.
(ii) Attempt any four questions from Part-II.

PART-I

1. (a) Find the power of the given signal below:

$$
X(n)= \begin{cases}12(-1)^{n}, & n \geq 0 \tag{2}\\ 0, & n<0\end{cases}
$$

(b) What is quantization error and also state sampling theorem?
(c) Find the DTFT of a sequence $x(n)=\{1,1,2,2\}$
(d) What are the properties of chebyshev filter?
(e) By impulse invariant method obtain the digital filter transfer function and the differential equation of the analog filter $h(s)=1 / s+1$.
(f) State and prove time convolution property of DTFT. (2)
(g) Check the BIBO stability for the impulse response of a digital system given by :

$$
\begin{equation*}
h(n)=3 a^{n} u(n) \tag{2}
\end{equation*}
$$

(h) What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase?
(i) What are the applications of multi rate DSP?
(j) Compare of FIR and IIR filters.

PART-II

. (a) Compute the signal energy for $x(t)=e^{-4 t} u(t)$.
(b) Find convolution of given signals:

$$
\begin{equation*}
x(n)=2^{n} u(-n-1) \text { and } h(n)=[1 / 5]^{n} u(n-1) \tag{5}
\end{equation*}
$$

3. (a) Show that the following systems are non-linear and time invariant.

$$
\begin{align*}
& y(n)-x(n-1) y(n-3)=x(n) \tag{5}\\
& y(n+2)+y(n)=x(n+1)+3 .
\end{align*}
$$

(b) Find the response of discrete time LTI system with impulse response $h(n)=(1 / 2)^{n} u(n)$ for input $x(n)=(3 / n)^{n} u(n)$.
4. (a) State and prove differentiation property of z-transform \uparrow Using differentiation property, determine the z-transform of $x(n)=2 n^{3} u(n)$.
(b) Determine the inverse z-transform of
$X(z)=\frac{z}{3 z^{2}-4 z+1}$
if region of convergence are
(a) $|z|>1$
(b) $|z|<\frac{1}{3}$
(c) $\frac{1}{3}<|z|<1$.
5. (a) Obtain the cascade and parallel realisation structures for the following signal :

$$
\begin{equation*}
\mathrm{H}(z)=\frac{2\left(1-z^{-1}\right)\left(1+\sqrt{2 z^{-1}}+z^{-2}\right)}{\left(1-0.5 z^{-1}\left(1-0.9 z^{-1}+0.81 z^{-2}\right)\right.} . \tag{5}
\end{equation*}
$$

(b) Derive the mapping formula for the approximation of derivatives method using backward difference.
6. (a) The sequence $x(n)=[0,2,4,6,8]$ is interpolated using interpolation sequence $b_{k}=[1 / 2,1,1 / 2]$ and the interpolation factor is 2 . Find the interpolated sequence $y(m)$.
(b) Design an ideal high pass filter with a frequency response
$\mathrm{H}_{\mathrm{d}}\left(e^{j w}\right)=\left\{\begin{array}{l}1 \text { for } \pi / 4 \leq|w| \leq \pi \\ 0 \text { for }|w| \leq \pi / 4\end{array}\right.$
Find the values of $h(n)$ for $\mathrm{N}=11$ using Hamming window. Find $\mathrm{H}(z)$ and determine the magnitude response.
7. Write a short note on the following :
(a) Filter Structures.
(b) Reconstruction of bandlimited signal from its samples.

