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ABSTRACT 

Initial predictive analytics was based upon statistical methods but in recent times machine 

learning has taken over. Here the system tries to envisage a complex mathematical function 

depending upon large number of variables. Keeping in view the inherent structures of these 

systems, one can infer that this strategy can only be applicable in case of the environment, 

which are fundamentally governed by the mathematical functions. But in the natural 

environment, most of the times the things are not purely based upon mathematical 

functions and there is some contribution of natural and human elements as well. Therefore 

we are of the view that pure machine learning methods are not adequate for designing the 

predictive systems. They have to be augmented with some other mechanisms to take care 

of human and natural elements. The work proposed in this thesis is an effort in this 

direction. 

The domain undertaken for the purpose of predictive analytics in the proposed work is 

price prediction in the Indian Stock Market. The reason for choosing this domain are: 

availability of data in public domain , ease of verification of input data, ease of verification 

ofresults, major characteristics of Big Data are complied. 

While taking the inference from the historical data, the working pattern of all the papers is 

somewhat similar to that of the time series prediction wherein the basic underline 

philosophy is that the trend will continue. However, the stock market prediction is not a 

matter of mere time series trend. Moreover, prediction accuracy has not been that good in 

any case as it varies from 60% to 85%. An error to the tune of 15% to 20% is quite huge 

and can lead to mega loss in the financial market. All these conventional machine learning 

mechanisms suffer from the usual drawbacks of opacity and overfitting. Moreover, the 

random fluctuations in the stock price data which is a very common element, in the stock 

prices, is a big hindrance to the proper convergence. Most of the papers go for the few 

prominent stocks without taking care of the spectrum as a whole. 

All these issues need to be taken care of for making any stock market prediction. So there 

is a need to come out of this mindset and efforts are required to put some human elements. 
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The work carried out resulted in the generation of various mechanisms for predicting the 

stock price movement to help the investors in making a rationale decision for their 

investments with an aim for continuous and long term survival in the market. The models 

I mechanisms proposed in the work are automatable without human intervention, in order 

to provide a credible advice which is free from human manipulations. 

Prediction process captures the macro details from the historic price data before applying 

the supervised learning process, making it free from the random price fluctuations in the 

raw data which normally leads to overfitting. Also the proposed work is not biased towards 

any particular company or sector therefore this thesis takes up the whole of the Nifty50 

spectrum of the Indian Stock Market. The work can be used in all the stock exchanges 

amongst all types of the stocks, across the globe. 

The work carried out resulted in the outcome of various prediction mechanisms whose 

details have been provided in this thesis. The credibility of the proposed mechanisms was 

verified on the actual scenario and the results were quite encouraging. 
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CHAPTER I 

INTRODUCTION 

1.1 PREDICTIVE ANALYTICS 

Predictive analytics is being used in many fields such as Weather Forecasting [1 ]-[3], 

Automated Patient Monitoring [4], [5], Stock Market price prediction [6], [7], Plant 

maintenance [8], Vehicle Maintenance [9], [ I OJ, Diagnostic Systems etc. Initial 

predictive analytics was based upon statistical methods [ 11 ]-[ 16] but in recent times 

machine learning has taken over most of the predictive systems are based upon the pure 

machine learning algorithms and their designer hope that the machine will identify the 

underlying pattern in the data and make the predictions. Here the system tries to 

envisage a complex mathematical function depending upon large number of variables. 

Keeping in view the inherent structures of these systems, one can infer that this strategy 

can only be applicable in case of the environment, which are fundamentally governed 

by the mathematical functions. But in the natural environment, most of the times the 

things are not purely based upon mathematical functions and there is some contribution 

of natural and human elements as well. Therefore we are of the view that pure machine 

learning methods are not adequate for designing the predictive systems. They have to 

be augmented with some other mechanisms to take care of human and natural elements. 

1.2 DOMAIN UNDERTAKEN FOR PREDICTIVE ANALYTICS 

The domain undertaken for the purpose of predictive analytics in the proposed work is 

price prediction in the Indian Stock Market. The reason for choosing this domain are as 

follows: 

a) Availability of data in public domain on various websites such as Rediffmoney 

[I 7], Yahoo Finance [18], Money Control [I 9] & NSE India [20] 

b) Ease of verification of input Data 

c) Ease of verification of results 

d) Satisfies the major characteristics of Big Data 

Here it is worth mentioning that the chosen domain satisfies the basic big data 

characteristics as described in Table 1.1 



Table 1.1 Compliance of Big Data Characteristic by Stock Market Data 

Big Data Does Stock Market Remark 

Characteristics Domain satisfy it? 

Volume Yes Data is voluminous. 

Velocity Yes Data is being continuously generated very fast. 
For example, Stock Price data. 

Variety Yes Heterogeneity in data related to company 
fundamentals, stock price, periodic sales and 
profit reports. 

Variability No Normally applicable to define NLP ambiguity 

Veracity Yes Accurate, complete and trustworthy data 
available which can be confirmed from websites. 

Visualization Yes Data is accessible, comprehendible and 
understandable. 

Value Yes Data and Prediction is of big financial value to 
the investors worldwide. 

1.3 RELATED WORK AND ITS CLASSIFICATION 

After going through various papers related to the stock market domain, it was found 

that most of the papers are related to price prediction on the short term basis. The 

concerns for the investors who are likely to stay regularly in the market for making 

continuous gain have not been addressed. Majority of the papers available in the 

literature are normally based upon different variants of artificial neural networks (ANN) 

and a variety of signal functions. The other techniques used, involve the use of time 

series analysis, ensemble learning and other soft computing techniques like rough sets, 

genetic algorithms. We now present the literature survey which has been classified on 

the basis of the techniques used. 

1.3.1 ANN based Forecasting 

Sirignano et al. [2 I] proposed a deep learning based mechanism trained on a set of 

global financial market features. The data used includes the purchasing and selling 

records for approximately I 000 NASDAQ stocks. NN consists of three layers with 

LSTM units with ReLUs in the last, with a stochastic gradient descent (SOD) algorithm 

as optimizer. It was also observed that feature selection process, if done before training 

the model, can reduce complexity. 

Ni et al. [22] predicted stock price trends by using SVM and optimized it by using 

fractal feature selection process. The data of the Shanghai Stock Exchange Composite 

Index (SSECI), and 19 technical indicators were used. Feature selection with k-cross 

validation was done before process ing the data set. Only the technical indicators are 
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considered in this k h . . . 
wor , owever ma.,or and minor factors of the financial domam have 

been ignored. 

McNally et al. [23], used RNN and LSTM based model for Bitcoin price forecasting. 

Th B" · 
e itcom dataset used for forecasting was from 19 August 2013 to July 19, 2016. 

The model used the B t I • h · · · t· · t· 
oru a a gont m of feature engineering and Bayesian op 1m1za ion 

to select LSTM parameters. 

Kara et al. [24] proposed two models based on ANN and SVM in predicting stock price 

movements. The data they used covers the period from January 2, 1997, to December 

31 , 2007, on the Istanbul Stock Exchange. The work has not compared performance 

accuracy achieved by it with other models. 

Fischer et al. [25] measured the effectiveness of a variety of deep learning methods with 

LSTM for financial market predictions. They analyzed the effectiveness of a variety of 

LSTM variables built on a daily price, standard values with daily volume, approximate 

weekly and weekly volume with average values and concluded that LSTM surpasses 

other deep learning algorithms and that it accurately captures logical information from 

time series data. 

Long et al. [26] developed a deep learning methodology for predicting stock price 

movements. The data used is Chinese stock market index CSI 300. By predicting stock 

price movements, they created a multi-filter neural network (MFNN) with a stochastic 

gradient descent (SGD) and a back propagation optimizer to study NN parameters. 

Jingyi Shen et al. [27] proposed a comprehensive customization of feature engineering 

and deep learning-based model for predicting price trend of stock markets. The system 

preprocess the stock market data to predict the future trends. The work is carried out in 

three phases namely pre-processing of data, feature engineering and trend prediction 

using LSTM. 

Kong et al. [28] proposed a data-driven approach with liquidity measures and technical 

indicators to predict intraday stock jumps. Amongst various models like Random 

Forest, SVM, ANN, and KNN, used for making predictions, RF outperformed. Hyper 

parameter optimization and optimal class balancing method can further improve the 

performance of their work. 
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1.3.2 General Soft Computing Techniques based forecasting 

Lei [29] used the Wavelet Neural Network (WNN) in combination with Rough Set to 
predict stock price trends. The database for this model contains five well-known stock 
market indicators, namely, (I) SSE Composite Index (China), (2) CSI 300 Index 
(China), (3) All Ordinaries Index (Australia), (4) Nikkei 225 Index (Japan), and (5) the 
Dow Jones Index (USA). 

Pimenta et al. [30] used multi-objective genetic programming for forecasting the stock 
market. The database was acquired in the Brazilian stock exchange (BOVESPA), and 
the key strategies they used were a combination of multi-purpose, genetic, and 
technological rules. They included a historical period, which was a critical period for 
Brazilian politics and economics when the validation was made. The limitation of the 
work is that the authors did not make any comparisons with other existing models. 

1.3.3 Time Series Analysis based Forecasting 

Idrees et al. [31] proposed a time series based model for forecasting stock market 
volatility. They designed three step feature engineering: Analyze the time series, see if 
the time-series is stationary or not, observe the ACF and PACF charts and identify input 
parameters. The work requires the customization of the A RIMA model for performance 
enhancement. 

Weng et al. [32] , focused on short-term stock forecasting using ensemble methods. The 
ensemble constitutes: neural network regression ensemble (NNRE), Random Forest, 
AdaBoost and vector regression ensemble support (SVRE). The limitation of this work 
includes price projections from 1 day to next 10 days with no scalability provisions. 
Moreover the work is based upon 20 U.S. market stocks only. 

1.3.4 Others 

Nekoeiqachkanloo et al. [33] proposed a model for stock investment. It is 
comprehensive system with data processing and two different algorithms that suggest 
the best components for investing. Second, the system has been embedded with the 
predictive component, which also retains the features of the time series. Finally, their 
input features are a combination of basic features and technical features that aim to fill 
the gap between the fi nancial sector and the technology domain. However, their 
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function is weak i th · . n e expenmental part. Instead of testmg the proposed system on a 

large database, they selected only 25 well-known shares. 

Jeon et al. [34] used a large database based on the millisecond interval using pattern 

graph tracking to make stock price predictions. The data they used is a large database 

based on milliseconds of historical stock data from KOSCOM, from August 2014 to 

October 2014. The predictions were made by using ANN and Hadoop and RHive with 

large-scale data processing. The only limitation of the work done is that it is difficult to 

access millisecond-based data in real life. 

Amit K. Sinha [35] estimated S&P500 index values for different periodic frequencies 

using drift and diffusion simulations on over nearly I lakh values and probabilities. 

Despite such a complex simulation, it is observed that the quality of the prediction 

reduces drastically as the period of prediction increases. 

He et. al. [36] forecasted stock return volatility based upon a regression model called 

A.RH which is a combination of autoregression (AR) model with Huber loss function. 

The results show that the inclusion of Huber loss function is more efficient than 

standalone AR model. 

1.4 DEFICIENCIES IDENTIFIED IN THE LITERATURE 

After going through the above work available in literature, following deficiencies have 

been identified which need to be taken care of: 

• Most of the work available in the literature is concerned about the stock price 

prediction for a very short duration generally one day to one week. It may 

however be noted that in most of the cases the price variation during the day is 

not much (I% to 2%) unless some extra-ordinary news comes. So any prediction 

is likely to be quite accurate. 

• While taking the inference from the historical data, the working pattern of all 

the papers is somewhat similar to that of the time series prediction wherein the 

basic underline philosophy is that the trend will continue. However, the stock 

market prediction is not a matter of mere time series trend. So there is a need to 

come out of this mindset and efforts are required to put some human elements. 
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• The assumption that the machine will be able to predict precisely is basically a 

wrong notion. The overall environment is a combination of multiple factors that 

has to be analyzed and evaluated in the holistic manner. The change of the 

technology from CNN to LSTM or their combination is not going to serve much 

of the purpose as the trends may not repeat. 

• The prediction accuracy has not been that good in any case as it varies from 

60% to 85%. An error to the tune of 15% to 20% is quite huge and can lead to 

mega loss in the financial market. 

• An investor in the stock market is there to stay for making the long term fortune. 

He needs a credible advice in this regard which can only come with the thorough 

analysis of the fundamentals of the stock under consideration. 

• All these papers are using the conventional machine learning mechanisms 

which suffer from the usual drawbacks of opacity and overfitting. Moreover, 

the random fluctuations in the stock price data which is a very common element, 

in the stock prices, is a big hindrance to the proper convergence. Most of the 

papers go for the few prominent stocks without taking care of the spectrum as a 

whole. All these issues need to be taken care of for making any stock market 

prediction. 

1.5 PROBLEM DEFINITION AND OBJECTIVES 

1.5.1 Problem Definition 

To create various mechanisms for predicting the stock price movement to help the 

investors in making a rationale decision for their investments with an aim for 

continuous and long term survival in the market. 

1.5.2 Objectives 

I. To collect the raw data related to Indian Stock Market from various credible 

sources. 

2. To identify the various factors which influence the price movement in stock 

market. 

3. To extract and create different features from this raw data for the purpose of 

analytics 
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4
· To apply the normalization process wherever it is required for the purpose of 

parity. 

5
· To apply ensemble of learning techniques to generate credible prediction 

models/mechanisms. 

1.5.3 Expected outcome 

The models I mechanisms proposed in the work should be automatable without human 

intervention, in order to provide a credible advice which is free from human 

manipulations. 

1.6 SALIENT FEATURES OF THE PROPOSED WORK 

a) The work is not biased towards any particular company or sector. To deal with 

this issue the work carried out in this thesis takes up the whole of the Nifty50 

spectrum of the Indian Stock Market. 

b) Prediction process captures the macro details from the historic price data before 

applying the supervised learning process, making it free from the random price 

fluctuations in the raw data which normally leads to overfitting. 

c) The chosen macrofeatures provide different views for looking at the data 

thereby increasing the dimensionality of the problem and making it more 

effectively solvable (37]. 

d) The work can be used in all the stock exchanges amongst all types of the stocks, 

across the globe. 

e) Systems proposed in this work are easily automatable. 

1.7 ORGANIZATION OF THE THESIS 

Chapter 2 "Literature Survey" contains the details of the study taken up to properly 

identify the problem to ensure that the problem to be solved is really existing and the 

proposed solution is state-of-the-art. 

Chapter 3 "Reinforcement Learning Based Predictive Analytics Framework for 

Survival in Stock Market" proposes a framework that partitions the available data into 

historical and future part. Jt generates various reinforcement signals by applying 

statistical and machine learning techniques on the historical data and studies their 

impact on the stock prices by analyzing the future data. The outcome of the process has 

been used to generate the rewards, through the use of fuzzy logic, for various actions in 
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a given state of the environment. Fully automated implementation of the proposed 

framework can help both institutional as well as common investor in taking the rational 

decision. 

Chapter 4 "Predicting a Reliable Stock for Mid and Long Term Investment" proposes 

a mechanism that assesses the intrinsic health of a stock, in an automated manner and 

provides credible advice(s). The work contains the development of a regression based 

supervised learning model using feature extraction from the raw data. The regressive 

output of the learning model provides a stock health index that has been classified into 

fuzzy sets. A fuzzy rule base has been created that generates the requisite advice on the 

basis of stock health index. The work concludes with the identification of some 

fundamentally good stocks and validates the results through their quantified 

performance. 

Chapter 5 "A Predictive Analytics Framework for Opportunity Sensing in Stock 

Market" proposes a supervised machine learning approach on statistically learned 

macrofeatures obtained from gist of input data which is free from drawbacks of raw 

data, to predict the price band for the upcoming month and a half for almost all 

NIFTY SO stocks. The predicted bands are tested for precision in comparison with actual 

stock price bands. Motivating outcomes so obtained were used to sense opportunity for 

buying/ selling / wait. The results showed that the proposed strategy is quite effective 

and can be successfully monetized. 

Chapter 6 "A Dynamically Adapting Framework for Stock Price Prediction" proposes 

a tailor made mechanism that involves the initial creation of candidate predictions, 

selection of the best pair and subjecting this pair to further reduction of error using back 

propagation learning. The results obtained are quite precise and scalable for the 

extended period. 

Chapter 7 "Conclusion and Scope for Future Work" concludes the work carried out 

during the learning period. Since for every work there are future dimensions to which 

it can be extended. Therefore the chapter closes with the identification of future 

extension possibilities. 
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CHAPTER-V 

A PREDICTIVE ANALYTICS FRAMEWORK FOR 

OPPORTUNITY SENSING IN STOCK MARKET 

Easy access to stock market data in electronic form has provided the researchers, a 

platform for extracting useful patterns for making future price predictions. In India, this 

data is available on various websites such as NSE [20], rediffmoney [ 17], moneycontrol 

[ 19], yahoo finance [ I 8] etc. Most of the predictive systems are based upon pure 

machine learning algorithms and their designer hope that the machine will identify the 

underlying pattern in the data and make the predictions [85], [97]-[102], [I 02], [I 03], 

[ I 03 ]-[ I 09]. Reasons for the immense popularity of machine learning include: ability 

to handle large amount of data, ability to map between well-defined inputs and outputs, 

availability of large digital data sets in current scenario, eradication of long chains of 

logical reasoning, tolerance for error, special skills not required for the user. The 

availability of the open source machine learning AP Is have fuelled these engines. 

The problem with the stock market price data is that the stock prices fluctuate many 

times a day and over a period of month there are so many random variations. If this data 

is used as such, then there are two possibilities. A rigorously trained system likely to 

fall in the trap of overfitting leading to quite erroneous results while in the validation 

phase. An ordinarily trained system would fall in the trap of underfitting and will not 

be able to provide accurate results. It is for this reason that most of the research papers 

available in the stock market prediction domain predict the data for a very small period 

from one day to one week [41], [54], [57], [I IO], [I I l]and are limited to only few 

prominent stocks [48], [I 12]-[116]. 

Keeping this aspect in view, we are of the view that the design of a predictive system 

should ideally be based upon macro features [ 117], [ 118], which can be created through 

a mathematical function based upon multiple low level features. These new reduced set 

of features should then be able to summarize most of the information contained in the 

original set of features. These features shall be more informative and interpretable in a 

better way. A system designed on the basis of these features shall have the following 

advantages over the conventionally designed purely machine learning based system: 

improved data visualization, increase in the explainability of the model, overfitting risk 
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reduction, improved accuracy, easy to debug and transfer learning ability (reusability 

of modules). 

In case of stock market, many such macrofeatures are available, which have been 

created by the various statistical researchers. These macrofeatures have been developed 

over time and interpreted for their utility. Number of these macrofeatures is quite large 

and the information provided by them is quite overlapping many times. It is possible to 

identify the non-overlapping macrofeatures and to combine the pieces of semi

processed information provided by them to create a meaningful prediction system based 

upon machine learning. The work carried out undertakes this task by applying 

supervised learning on the combination of macrofeatures. 

The task includes the extraction of non-overlapping macrofeatures from the past price 

data over a period of 120 working days (almost 6 months) for creating the unified input 

feature vector and the data of next 30 working days (almost month and a half) for the 

as desired output. The learning mechanism so created is used for prediction on similar 

future data. This completes the cycle. The output obtained, is a predicted price band 

which is likely to prevail in the upcoming month and a half. 4 such cycles have been 

used to demonstrate the precision of the proposed mechanism. The ensuring of the 

precision is an academic task that requires monetization aspect for its commercial 

usage. Keeping this aspect in view, the price band so obtained has been used for 

signaling the various opportunities like buying/selling/wait keeping in view the 

prevailing price position. The results show that the system is effective and can be used 

for continuous gain. 

5.1 PROBLEM DEFINITION AND OBJECTIVES 

Before taking up details of the proposed work, let us explicitly define the problem and 

the associated objectives. 

5.1.1 Problem Definition 

To predict the future price band of the NIFTY50 stocks by using different macro 

features create on the historic price data. 
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5.1.2 Objectives 

• To design a framework using regression based supervised learning to predict the 

maximum, minimum and average price of the stock for the upcoming 30 working 

days from the historical data of past 120 working days. 

• Input feature vector of the supervised learning process should be created from 

component feature vectors obtained from the different macrofeatures. 

• The macrofeatures used for the purpose should have the different views in order 

to represent multiple aspects of the data. 

5.2 PROPOSED FRAMEWORK 

As described in the previous section, the proposed work is based upon the different 

macrofeatures capable of providing complete and nearly non-overlapping views. We 

start the discussion with the selection of macrofeatures. 

5.2.1 Selection of Macrofeatures 

The first view involves the comparative strength in the price movement wherein it is 

observed for how many days the price went up or down and by what magnitude in the 

period under consideration. The stock markets normally use Relative Strength Index 

RSI (14) for this purpose to measure the relative strength of the price in the past 14 

working days. This macrofeature was developed by J. Welles Wilder [59]. RSI is a short 

term momentum indicator whose value oscillates between the 0 and I 00. The value of 

the index is has been calculated for the recent past using a single-step formula as given 

in Eq. 5.1 . The detailed excel sheet based calculations for RSI can be seen at various 

websites [33]. 

[ 
100 l RSI = 100 - . 

1 + Average gain 
Average loss 

(5.]) 

RSI was implemented through sliding window process in Microsoft Excel. We have 

used RSI (120), RSI (60), RSI (30), RSI (15) and RSI (5) to create the component 

feature set. 

The second view involves the moving average for the past period which conveys the 

basic direction of the price movement. This movement can also be generally increasing, 

oscillating or generally decreasing. To take the historical account, Simple Moving 

Average (SMA) was computed for the period of 5, 15, 30, 60 and 120 days and was 
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represented as SMAk where k is the number of days with current day being referred as 

nth day. SMA [60] is the arithmetic mean of the close price as in Eq. 5.2. 

n 

SMAk = i L Pi 
(5.2) 

i=n-k+l 

The third view involves the possible upward or downward movement of the price to 

anticipate the risk. For this purpose, the stock market uses Bollinger Bands for past 20 

days with 2 levels of standard deviation represented as BB (20, 2). The component 

feature set relating to this view has been created using BB (120, 2), BB (60, 2), BB (30, 

2), BB (15, 2) and BB (5, 2).Bollinger Bands [61] are a technical analysis tool, 

specifically they are a type of trading band or envelope. BB uses central tendency, such 

as moving average, as the base for defining highs and lows of the band referred to as 

upper band (UB) and lower band (LB). Formulas for computing the UB and LB are as 

shown (3) & (4). 

Lt=/Yi - MA) 2 

UpperBB =MA+ D (5.3) 
n 

LowerBB = MA - D 
Lt=1(yi - MA)2 

(5.4) 
n 

where MA is the Moving Average and D represents the number of standard deviations. 

The fourth view of the component feature set is the actual closing price on the start and 

ending date of the cycle represented as Dayl_CP and Dayl20_CP respectively. 

These four views take care of multiple aspects of the price data which consider the basic 

direction of price movement, dispersion in price movement and relative magnitude of 

upward/ downward movement on the daily basis thereby completing the entire spectrum. 

Here it is worth mentioning that the input data so created is almost free from random 

fluctuations, distractive patterns and much lesser in volume. Moreover, supervised 

learning model created from such a data would be much more transparent than the one 

created on the raw data. 
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S.2.2 OVERVIEW AND WORKING OF THE PROPOSED FRAMEWORK 

Fig. 5.1 shows the overview of the proposed predictive framework. The work begins 

with the identification of the macrofeatures keeping their applicability in view. As 

described in the previous subsection, the identified macrofeatures are RSI, SMA and 

BB with their computations at various junctures for past 120 working days. Next Step 

involves the design of unified input feature vector. Fig 5.2 shows the components of 

three input feature vectors used for predicting the maximum, minimum and the average 

output. The feature vector for maximum price prediction uses Upper Bollinger Band 

(UB) only. Feature vector for minimum price prediction uses Lower Bollinger Band 

(LB) only. Feature vector for average price prediction uses both UB and LB. Now raw 

data relating to past 120 working days is picked up and the unified input feature vector 

is created for all the companies under consideration. Thereafter, the data for next 30 

working days is taken as target output for training purpose. Training module, so 

obtained, is applied on the next cycle 120 working days input data to obtain the 

predicted output. The obtained predicted output is compared with the output of the next 

30 working days to validate the results. The process is repeated many times to ensure 

the consistency and accuracy of results. 

The trained module, so obtained, is used for opportunity sensing. The design of the 

opportunity sensing module is shown in Fig. 5.3. It is based upon the normalization of 

the min and max value to range [0, I 00]. Fuzzy sets are created over this normalized 

range. The current price is then applied to the normalized range to identify the 

corresponding fuzzy set(s) with its membership. Fuzzy set(s) and their corresponding 

memberships are used to identify the applicable opportunity with associated rewards. 

If the rewards obtained exceed the threshold then corresponding opportunity is 

signaled. The significance of signaled opportunities is validated for their monetization 

abilities. 
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The subsequent section talks about the conduct of the experiment based upon the 

proposed predictive framework. 

5.3 THE EXPERIMENT 

5.3.1 Experimental Setup 

As described earlier, the experiment was repeated for 4 cycles by taking the data for 46 

NIFTY50 companies, listed in Table 5.1 from the various websites [17]-[20] for 

evaluating the framework. Detail of various cycles is given in Table 5.2. 

An artificial neural network (ANN) was trained on the input/output using Python 3. 7 

After reducing the mean square error (MSE) to its minimum, trained module was 

applied on the input data of prediction phase. The results so obtained were checked with 

the actual outpuJ for the purpose of validation. Table 5.3 5.4, 5.5 and 5.6 show the 

training, testing and validation details for Cycle 1 for Max, Min and Average stock 

prices. 
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Table 5.1: List ofNIFTY50 companies under consideration 

Co.No. STOCK Co.No. STOCK 

I Adani Ports & Special Economic Zone 24 ITC Ltd.(L) 

2 Asian Paints Ltd.(L) 25 JSW Steel Ltd.(L) 
3 Axis Bank Ltd.(L) 26 Kotak Mahindra Bank Ltd.(L) 

4 Bajaj Auto Ltd.(L) 27 Larsen & Toubro Ltd.(L) 
5 Bajaj Finance Ltd.(L) 28 Mahindra & Mahindra Ltd.(L) 

6 Bajaj Finserv Ltd.(L) 29 Maruti Suzuki India Ltd.(L) 

7 Bharat Petroleum Corporation Ltd.(L) 30 Nestle India Ltd.(L) 

8 Bharti Airtel Ltd.(L) 31 NTPC Ltd.(L) 

9 Britannia Industries Ltd.(L) 32 
Oil & Natural Gas Corporation 
Ltd.(L) 

10 Cipla Ltd.(L) 33 
Power Grid Corporation Of 
India 

11 Coal India Ltd.(L) 34 Reliance Industries Ltd.(L) 
12 Dr. Reddys Laboratories Ltd.(L) 35 Shree Cement Ltd.(L) 
13 Eicher Motors Ltd.(L) 36 State Bank Of lndia(L) 

14 GAIL (India) Ltd.(L) 37 
Tata Consultancy Services 
Ltd.(L) 

15 Grasim Industries Ltd.(L) 38 Tata Motors Ltd.(L) 
16 HCL Technologies Ltd.(L) 39 Tata Steel Ltd.(L) 
17 HDFC Bank Ltd.(L) 40 Tech Mahindra Ltd.(L) 
18 Hero MotoCorp Ltd.(L) 41 Titan Company Ltd.(L) 
19 Hindalco Industries Ltd.(L) 42 Ultratech Cement Ltd.(L) 
20 Hindustan Unilever Ltd.(L) 43 UPL Ltd.(L) 

21 HDFC 44 Vedanta Ltd.(L) 

22 ICICI Bank Ltd.(L) 45 Wipro Ltd.(L) 

23 Infosys Ltd.(L) 46 
Zee Entertainment Enterprises 
Ltd 

Table 5.2 Training, Testing and Validation details 
Training Phase Prediction & Validation Phase 

Period for input 
Period for output 

Input data period 
Prediction training data for feature CYCLE data used for period for feature extraction for 

extraction ( 120 supervised learning 
testing ( 120 validation (30 

working days) (30 working days) 
working days) working days) 

Cycle! 
I July 20-1 8 Dec. 

21 Dec.20-2 Feb. 21 3 Aug 20- 21 Jan. 22 Jan. 21-5 
20 21 March 21 

Cycle2 
3 Aug 20- 21 Jan. 22 Jan . 21-5 March I st Sept, 20 - 22nd 23rd Feb, 21 - 8th 

21 21 Feb, 21 April,21 
Cycle 3 

I Sept, 20 - 22nd 23rd Feb, 21 - 8th I st Oct, 20 - 25th 26th March , 2 1-
Feb,21 April, 21 Mar, 21 12th May, 21 

Cycle 4 
I st Oct, 20 - 25th 26th March , 2 I- 2nd Nov, 20- 29th 30thApril, 21-

Mar, 2 1 12th May, 21 April,21 I Ith June, 21 
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Table 5.3 Training Data for Max Price Prediction - Cycle 1 

Co.No. RSI RSI RSI RSI RSI SM.-\ SAIA SM.-\ D,"I D,rl20 120 60 JO Ii i l"B llO UB ~O UB JO UB !i l"B l llO 60 S.\WO 
Ii S~IAJ ci> CP MAX 

il.6 67.0 69.1 63.4 23.1 438.7 m.s 500.i 499.1 410.0 Ji).) 3!1.9 41U m.o 470.J 3-ll.8 46JJ lJ8.6 
6-1.1 69.0 i0.7 81.9 i9.2 2466.S 2539.i 26l6.0 lilO.I l60i.9 1997.l 2190.J 2Jl0j 2m.o 2550.S 1618.0 2601.i 2849.3 
i7.6 66.1 i6.S )7.4 li.3 627.6 6!U Wl 6]1.6 619.0 486 l lli.l 6021 611.I 609.6 43JJ 609.5 ml 
i6.4 l8.7 66.0 581 Ji.i Jl3Jj 3342.1 3432.4 3)96.J 3J40.3 2995.8 l06U llil.O Jll9.7 3l9l.4 2842.1 3347.6 4201.i 
63.1 70.0 76.l 59.6 6H 48iJ.l 5417.i 54)6.2 lllO.l i4l7.S l639.1 396i.S 4617.3 4914.4 JOJ9.7 1953.9 52i2.i Hl4.l 
62.0 14.1 811 51.2 4ll S74i.l 9Sll1 10411.i 9)12.0 9508.6 6592.9 7002.! SIJS.3 9007.9 9li5J 6169.4 9115.6 9721.8 
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Table 5.4 Validation and Testing Data for Max Price Prediction - Cycle I 
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Table 5.5 Training Data for Min Price Prediction - Cycle I 
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Table 5.6 Training Data for Average Price Prediction - Cycle I 
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5.3.2 Experimental Observations 

The output of the experiment for various cycles has been depicted in Fig. 5.4 to Fig. 5.10. The 

results can be divided into two segments: 

First Segment from Fig. 5.4 to Fig. 5.7 depicts the cycle wise performance of the proposed 

model. To evaluate the performance, the obtained output has been classified into Prediction 

Accuracy Bands (P ABs) of size ±3%, ±5%, ±7%, ± 10% and ± 15%. The results of the min 

prediction are q uite remarkable and majority of the stocks are covered within ± I 0% band. Next 

performer is average price prediction. Max price prediction comes in the last. The reason for 

the same is that the Indian stock markets have seen significantly high upward trend in the post 

pandemic (COVID) scenario. The beauty of the output is that it is consistent amongst all the 

cycles. 

Second Segment from Fig. 5.8 to Fig. 5. 10 depicts the consolidated performance which 

quantifi es the average performance across all cycles and endorses the above mentioned results. 
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Fig. 5.11 to Fig. 5.13 show the stock wise actual perfonnance through the use of scatter 

diagram. The purpose of these diagrams is to show that a significant portion of predictions 

results are bound in the narrow band and numbers of outliers are very few ensuring the good 

fitness of results. Since the stock price are different for different stocks, a stock may have the 

price as 230 and other as 15600 therefore while plotting these graph the actual pric.e ( max, min 

or average) was nonnalized to 100. Fig. 5.13 shows a particular case where the numbers of 

outliers are quite high. This is the worst graph we obtained. But such things are quite likely in 

a random environment like stock market. 
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Fig. 5.8: Maximum Price Prediction Trend across all cycles 
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5.4 OPPORTUNITY SIGNAL GENERATION 

The goal of this system is automated generation of an opportunity signal (indicating the 

advice to buy/sell/wait) with appropriate rewards. To accomplish the same, following 

methodology was adopted: 

• The range between maximum and minimum prediction was normalized to (0, 

100] using a scaling factor. For example, for a stock say X, if the minimum 

predicted value is a and maximum predicted value is b then the Scaling Factor 

(S) for normalization is 100/ (b-a). Now, for a current price Cp, the normalized 

value will be (Cp-a)*S 

• This normalized range (0, 100] is now fuzzified to three fuzzy sets namely Top, 

Mid and Bottom as shown in the Fig. 5 .14. For a given current price, a situation 

can be classified into one of the above fuzzy sets. 

• Depending upon the fuzzy set(s) and the memberships obtained, the fuzzy sets 

Top/Mid/Bottom can be classified into sell/wait/buy opportunity call 

respectively on the basis of reward points. 

• The simplest reward point system would be 100*µ, whereµ is the membership 

in the fuzzy set. Such a system would create 50 or more reward points as and 

when µ exceeds 0.5.However, to make the system safer it is advisable to adopt 

a formula like 1 OO*µk with k > 1 so as to weaken the opportunity call generated 

at lower memberships (as per the expert advice). Table 5.7 illustrates the 

mechanism described above for k=2. An increment in the value of k reduces 

the number of opportunities generated but increases the gain per opportunity 

thereby maintaining the overall gain reducing the risk factor at the same time. 

The same has been shown in the next section wherein the opportunities have 

been explored with value of k from 1 to 7. 
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Table 5.7: Opportunity Signal Generation illustration 

Predicted Predicted Nonnalization Fuzzy set( s) 
Opportunity 

Company High price low price Range factor S-
Cwmit Nmnali:ml with 

Signal 

(b) (a) 
(b-a) 

100/(b-a) 
Price{J! Value membmhip 

(Rewards at 

t=2} 

A 18000 16500 1500 0.07 17234 48.93 Mid (l.O) No actioo (100) 

B 1200 750 450 022 903 34.00 
Bottom(03) Buy(9) 

Mid (0.?} No action (49) 

C llOO 700 72.00 
Mid(0.4) No Action (16) 

400 0.25 988 Top(0.6) Sell(36) 

D 1500 1250 250 0.4 1310 24.00 
Boaom(0.8) Boy (64) 

Mid(0.2) No Action (4) 

E 1000 800 200 0.50 980 90.00 Top(!) Sell (100) 

Table 5.8: Opportunity Analysis at k=2 

No or Stocks - drr Consideration = 46 
CASE ! CASE l CASE 3 C ASE4 Profit Loss N etGam 

Cycle 1 18 18 2 8 4250.8 - 1516 2674.99 

Cycle l 12 20 4 10 5839.1 -1421 4417.85 

Cycle 3 24 7 4 II 2724 -151.5 2604.98 

Cyde4 15 13 7 II 2 124.5 -982 6 202622 

Average 172 5 14.5 4 .25 IO 3734.6 -811.7 2931.01 
Ckcarnnce 
Success ('1e) 37.5 3 1.5 924 22 100 -21.78 1822 

Table 5.9: Detailed Computation Scenarios for Cycle 1 at k=2 

c... ,..,_,...,.. A£_ '!i,~ rr...Mm Pr_MAX .._ BO 
Ne. POC'<T 

so BO so --POC'<T - - R£rUR:'iS ~ 

l 509.7 0 7:,2_45 514 .4& 639. l l 124.63 .546.71 

_ _ as, 

y y 60.1 7 7U...9.:5 

2 2277 ""0 2.S96.6 , 2:597.73 3029.33 431.60 2709...34 2917.72 N N 0 .00 2.357.1 0 

3 6 32.10 7 94.00 66&..:5' 7 116.6& l l S . 13 699.10 7:56.13 y y 57.03 730.7.:5 

4 379&. 70 4237.4.:5 3452...04 4002.33 !5.S0..:50 3.:594..39 3 &60. 18 N y 0.00 3,a,2..u , 47 34.:SS 5779.SS 4&20.:SS .,.,&l.4 7 762.93 $01 7 .&4 :53&6. 18 y y 36L34 S,444..90 

6 S722...75 10537. 70 8460.3' 9 74&.72 12&&37 8 793..:52 94U..:55 y y 622.02 9 .9,a. 10 

7 310.A!O 469.00 402.60 493. 74 9 1 . 14 426 . 17 470.17 y N 3$.6 3 461 .S 

a .:532.20 csos.as '63.40 6&&.36 124.96 59:S. 71 6'6.04 y N .Q.91 ,32.a 

9 3331.20 36 13-'S 3$01. &6 4040. l & .:SJS32 .3641-0 7 3900.97 N N 0 .00 3 .491.7.:S 

10 7'7.0 .5 &63.40 804..SO ...... oa l.:S9 • .5& &-U.TT 922.82 y N -40.62 ao,. 1., 

11 125.90 1.56. 10 13 9 . 14 176 .63 3=J31 148.&4 166.9:S y N 226 1 . .51 . l 

1 2 4404.7 0 :50&2.40 4927.&7 .:S76 1.24 &.33.37 ..:S l 43..3& .:S.54S.73 N N 0 .00 4_49:i__,;o 

13 24&2..3' 2972.60 27J0.96 3 1S..:S.99 47:S.0 3 2&33.SO 3063. l S y N -246.o, 2.,:587 .7.S 

14 t.2S.30 u o.ao 131-4.:S l SS .4 1 2 6 .96 13&..42 l.:Sl.44 y N 8.73 147. t...:s ., 1004.00 13.:SOAO 996.97 1176 .6 3 179.66 1043.43 1 130. 1 7 y y 86. 74 1..339.3, 

16 909A, ,.,.,.a0 97 t .a2 11'6.4.3 1&4.61 1019. 56 110&.69 N N 0 .00 941.5 

17 2377.&0 2860.45 2566.7 6 2964 .. '3 397.77 2669.63 2 861.67 y N -U,.73 2.543.90 .. 3224.00 3.5&4.00 30&2.-'3 3636. U .:S.:SJ.61 3223.69 349 2....97 y y 2>67.2& 3.461_70 

19 226.30 3'9.3, 2.51. 16 3 1.9 .6.:S 6&.49 268.&7 301...94 y y 3 3 .0 7 337.&S 

20 21.32.05 2409.3' 2304.64 2648.63 3-&3.9& 239 3 .60 is,9 .67 y N - 192.-'0 2.201. 10 

21 48_&4 &3.26 73.49 79.Jl , .82 74:sii n .so y y 2.81 82.2& 

22 ,22.3, 673.9, 54&.0 7 647.74 99.67 .:S73.&4 621.96 y y 4&.12 609.4' 

23 12.39.0 5 1343..S:S 1.305 .&9 1526 .00 220. 11 1362...81 1469.08 N N 0 .00 1.0 3 9 .90 

24 203..25 23-4..3.:S 2 14....:S 7 277.16 62.-'8 230. 76 260.9 7 y N --2221 208...SS 

B 366 .. , 42.S. 1.:S 3&633 481. 11 94.-'6 4 11 .00 456.66 y N -4.60 406.4 
26 1,1.2..9s 2019 .6 :S 1&87.4 9 2 144.60 257. ll 19.53..9& 2078.ll y N -3 1.48 1.922-'0 

27 t.33-4. 70 1.566.45 1357. 13 l.:S4.J..97 1&6.84 140:S.4:S 149.:S.6.:S y y 90.21 1 ,463.3' 

28 7 49.60 928.40 770. 72 938 .6 1 167.&9 814 . 13 89:S.19 y y 8 l.C)6 &40.4 

29 6866. 1' 
_._., 7456.63 U64.92 1408..30 7&20.&l &.S00. 74 y N - ..:S71 .8 1 7 .,249.00 

3 0 16096.30 1 75&9.60 17063 .90 19 737..29 2673.39 tnSS.24 19045.9' N N 0 .00 1~7&2..90 

3 1 a&.9, 112.70 99.0 1 117..3& 18.3 1 103.81 112 .64 y y 8.84 108 .7 

32 ii..30 1 19.0S H .09 111::§'..:s 13.86 101. 67 10837 y y 6 .69 1 14...9.:S 

33 1 &4..4.'.5 236 ..:SO 1.9.'.5. 70 2.S6..IO 6 1..10 211.-'0 24L00 y N -46.31 16'. l.9 

34 l&41.9S 2202. 10 1993.22 230,.06 3 11.S S 2073 .&6 2224.42 y N 104. 84 2.178. 7 0 

3, 22'TT3.3S 2&676 .60 229S7.0 2 26739..S9 37S2....S7 239 37..SI 237 69.40 y V l&ll..SS 27.S48..60 

36 27.s.6, 4 1.S.20 2&1.62 36,39 77.96 307. 79 34.:S.43 y y 37.64 3&3.6 .'.5 

3 7 2894.30 330 3 . 10 30.'.5&.&3' H i>ii.oa 3'37.23 3 197.78 .3457. 1.:S y N - 1 119.73 3 .00&-0 5 

3& 262.70 348-'0 22&.4, .117.0 .:S 10&.A!O 2.S6.3i 308..9 7 N y 0 .00 32:S . I S" 

39 601.00 777. 1.:S 693.0 1 79ii:99 10:.:S..9'& 720.42 n1-.:sa y y :51-17 733..3 

40 91&.A.S 1010.60 999.U 1176 .61 176 .7& 104.:S-..34 I U0.8 !> N N 0 .00 9 .S9 .7 

4 1 140,..2.j 1'63. 1' U:10.46 1730..14 2 19.&S 1'67.32 1673.4& N N 0 .00 1 . .a14 'io 
42 .'.5J27 .2.5 6&10..30 .S23&.S4 - 3.22 &2438 ,-..,2.0 2 .'.5&$0.03 y y 39&.0l 6 .a10Jo 

4 3 ,34. 10 6t,A, 506. U 672.90 166.1 1 '49 .29 629.7 & y N .U.26 S9t 3S 

44 161.2.S 2 19.30 164.7.S 2 1 8 ..60 ,3.U 1 7&.67 204.67 y y 26.00 2 19..23 

4' 4 10..30 446.4.S 4 11.26 S-36.20 124.93 44.337 $03.&9 y N -22.72 "20.U 

46 201..00 249.45 217..94 292.39 7 4 .44 237 .19 273. 14 y N -19. 1-1 2t a.o, 
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Table 5.10 Cycle 1 

K CASE I CASE2 CASE3 CASE'4 Gain Loss Net 
I 21 14 2 9 369S.63 -1576.36 2119.273 
2 18 18 2 8 4250.802 -157S.81 2674.991 
3 16 19 3 8 4261.828 -1504.S1 2757.321 
4 16 20 3 7 4416.822 -1S52.S8 2864.237 
5 16 20 3 7 4S13.081 -1526.97 2986.111 
6 16 20 3 7 4579.973 -1S09.17 3070.803 
7 16 20 3 7 4627.287 -1496.S8 3130.707 

Table 5.11 Cycle 2 

K CASE l CASE2 CASE3 CASE4 Gain Loss Net 
I 15 19 3 9 4911.198 -165S.89 3255.309 
l 12 20 4 10 5839.135 -1421.28 4417.852 
3 11 22 4 9 6239.678 -1519.S8 4720.095 
4 9 24 s 8 6407.916 -160S.61 4802.308 
5 9 24 5 8 6544.296 -1564.79 4979.511 
6 8 23 6 9 6414.57 -1536.42 4878.153 
7 8 23 5 10 6479.152 -1516.3S 4962.801 

Table 5.12 Cycle 3 

K CASE I CASE2 CASE3 CASE4 Gain Loss ~et 
I 25 6 3 12 2326.338 -148.893 2204.388 
2 24 7 4 11 2723.972 -151.51 2604.981 
3 24 8 4 10 2919.586 -147.211 2791.468 
4 24 8 4 10 3027.005 -144.849 2902.862 
5 24 8 4 10 3093.717 -143.383 2972.043 
6 24 8 4 10 3140.76 -143.048 3020.119 
7 24 8 4 10 3174.207 -142.983 3054.123 

Table 5.13 Cycle 4 

K CASE l CASE2 CASE3 CASE4 Gain Loss Net 
I 15 12 7 12 1707.628 -106.433 1601.195 
2 15 13 7 11 2124.479 -98.2612 2026.217 
3 15 13 6 12 2309.646 -84.7642 2224.882 
4 15 13 6 12 2411.327 -77.3526 2333.975 
5 15 13 6 12 2474.5 -72.7726 2401. 727 
6 15 13 6 12 2519.296 -70.4859 2448.81 
7 15 13 6 12 2S50.98 -68.8685 2482.112 

5.5 VALIDATION OF RESULTS 

To validate the results, every cycle was checked for the occurrence of buying/ selling 

opportunity for each of the 46 stocks. If the opportunity occurred, then one number of 

stock of the company was bought I sold. The data so obtained has been shown in Table 

8. Let us represent the occurrence I non-occurrence of the buying/ selling opportunity 

by "Y" / "N" and BO/ SO respectively. Now there can be four cases: 

Case 1: BO = "Y" and SO = "Y" 

In this case both buying and selling opportunities have occurred, during the 
validation period of 30 working days, leading to profit generation. 
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Case 2: BO= "Y" and SO= "N" 

In this case only buying opportunity has occurred. Since selling opportunity did not 

~ccur, there are two possible options: selling can be postponed to subsequent cycle(s) 

or selling can be done on the last day of the cycle, be it profit or loss. We have gone for 

the second option in order to finish the task with in the same cycle. 

Case 3: BO= "N" and SO= "Y" 

Here no buying opportunity has occurred so there is no possibility for selling leading 

to no transaction. 

Case 4: BO= "N" and SO= "N" 

Here neither buying nor selling opportunity has occurred, so there is no transaction. 

Table 5.8 shows the opportunity analysis at k=2. The analysis in Table 5.8 shows that 

in 37.5% cases the both buying and selling opportunities were generated leading to 

majority profit. In 31.5% cases, selling opportunity did · not occur leading to distress 

selling on the last day of the cycle which resulted in the loss in many cases but there 

was overall gain. In the overall scenario, on the average 21.78% profit (809/3713) was 

wiped out due to distress selling resulting in overall gain of78.22% (2911/3713). Table 

5.9 shows the detailed computation scenario for cycle l at k=2. 

Table 5.10. 5.11, 5.12 and 5.13 show real net gain obtained in various cycles by varying 

the value of k from I to 7. The results endorse the hypothesis that increase in the value 

of k, decreases the risk factor without affecting the net gain. Overall gain across all the 

cycles show that the proposed mechanism is quite trust worthy. 

The proposed work is able to make a reasonable stock price band prediction for the 

upcoming one and a half month with quite significant accuracy. In Indian Stock Market, 

to prevent the undesirable manipulations of stock prices a circuit of 5% or I 0% is 

imposed on the stock price on the daily basis. Most of the NJFTY50 stocks are in the 

I 0% band. Thus, for a market undergoing a strong trend, whether upward or downward, 

it is not uncommon to have a change in the range of 30% to 60% in a period of one 

month and a half. The post pandemic rally, after September 2020, has raised stock price 

2 to 3 folds in the period under review (spread across all cycles) for a quite a significant 

fraction of the popular stocks. 50-60% rise has been seen in majority of stocks. The 

NSE bench mark index has risen by one and a halftimes. Under the circumstances, the 

predictions made by our system are quite appropriate and reliable. Though the scenario 
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undertaken is Indian stock market, yet the work can be utilized to any stock market 
across the globe. In the literature, the predictions are related to few prominent stocks, 
in our case almost entire NIFTY50 band of Indian stock market has been taken into 
consideration. The concern is not only the single day price but the expected price band 
in the upcoming future to effectively sense buying/wait/selling opportunities. The 
system has been able to successfully generate the opportunity signal with reasonable 
net gains. It was observed that larger the value of k, lesser is the risk and more is the 
gain as well. Thus a larger value ofk is desirable but an extremely high value of k (> I 0) 
can result in missing of the opportunities to a large extent. 

The price band results obtained in the proposed model can be classified in the good 
fit category as they are consistent across all the cycles. We tried to extend the work with 
the inclusion of more features through the inclusion of their component features. This 
led to the deviation of the results due to overfitting. It will be a good exercise for new 
researchers if they can include more component features without falling in the trap of 
overfitting. 
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