016301

Mar. 2022

B.Tech. CE (DS) - III SEMESTER Mathematics for Data Science (BSC-DS-301)

Instructions :

1. It is compulsory to answer all the questions (1 mark each) of Part-A in short.
2. Answer any three questions from Part-B in detail.
3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Let $R=\{(1,2),(2,3),(3,4),(2,1)$ be a relation on a set $A=\{1,2,3,4\}$. Find the transitive closure of R.
(b) If $A=\{2,3,6,12,24,36\}$ and R is the relation such that $x R y$ if x divides y, draw the Hasse diagram of (A, R).
(c) Explain complete graph with example.
(d) State Euler's Theorem for a connected graph.
(e) Describe normal group.
(f) State Lagrange's theorem for a group.
(g) State "Kleene Theorem".
(h) Show that grammar G with productions $S \rightarrow a S$, $S \rightarrow S a, S \rightarrow a$ is ambiguous.
(i) What is the difference of Bisection and Regula-Falsi method?
(j) Using Simpson's rule, find $\int_{0}^{1} \frac{d x}{x}$, (taking $\left.n=4\right)$.

PART-B

2, (a) Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be real valued functions defined by
$f(x)=2 x^{3}-1, x \in R$ and $g(x)=\left[\frac{1}{2}(x+1)\right]^{1 / 3}, x \in R$.
Show that f and g are bijective and each is the inverse of each other.
(b) Let A and B be two sets. If $A \subseteq B$, then $P(A) \subseteq P(B)$.
3. If G is a connected planar graph with e edges, v vertices and r regions, then $v-e+r=2$.
4. The product $H K$ of two subgroups H and K of a group G is a subgroup of G if and only if $H K=K H$.
5. (a) Evaluate $(30)^{-1 / 5}$, by Newton's iteration method (correct to four decimal places).
(b) Find a real root of the equation $x^{3}-2 x-5=0$, by the method of false position correct to three decimal places.
6. (a) Find the language $L(G)$ generated by the grammar G with variables $\sigma, A, B ; T=\{a, b\}$ and productions $P=\{\sigma \rightarrow a B, B \rightarrow b, B \rightarrow b A, A \rightarrow a B\}$.
(b) Show that language $L=\left\{a^{m} b^{m}: m\right.$ is positive $\}$ is not regular.

